Skip to main content
Log in

General Tortoise Coordinate Transformation in a Dynamical Kerr-Newman Black Hole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Under the extended dynamical tortoise coordinate transformation, Damour-Ruffini method has been applied to calculate the charged particles’ Hawking radiation from the apparent horizon of a dynamical Kerr-Newman black hole. It is shown that Hawking radiation is still purely thermal black body spectrum. Moreover, the temperature of Hawking radiation is corresponding to the apparent horizon surface gravity and the first law of thermodynamics can also be constructed successfully on the apparent horizon in the dynamical Kerr-Newman black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gibbons, G., Hawking, S.W.: Phys. Rev. D 15, 2752 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  4. Damour, T., Ruffini, R.: Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  5. Sannan, S.: Gen. Relativ. Gravit. 20, 239 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Parikh, M.K.: Int. J. Mod. Phys. D 13, 2351 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Parikh, M.K.: Energy conservation and Hawking radiation. arXiv:hep-th/0402166 (2004)

  9. Zhang, J.Y., Zhao, Z.: Phys. Lett. B 618, 14 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. Zhang, J.Y., Zhao, Z.: Phys. Lett. B 638, 110 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 024007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Shankaranarayanan, S., Padmanabhan, T., Srinivasan, K.: Class. Quantum Gravity 19, 2671 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: J. High Energy Phys. 0505, 014 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhou, S.W., Liu, W.B.: Int. J. Theor. Phys. 47, 617 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, B., Wang, G., Liu, W.B.: Mod. Phys. Lett. A 23, 281 (2008)

    Article  MATH  ADS  Google Scholar 

  17. Liu, X.M., Liu, W.B.: Astrophys. Space Sci. 318, 219 (2008)

    Article  MATH  ADS  Google Scholar 

  18. Babinot, R., Barletta, A.: Class. Quantum Gravity 6, 195 (1989)

    Article  ADS  Google Scholar 

  19. Zhao, Z., Dai, X.X.: Chin. Phys. Lett. 8, 548 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hayward, S.A.: Phys. Rev. D 49, 6467 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hayward, S.A.: Phys. Rev. Lett. 93, 251101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hayward, S.A.: Phys. Rev. D 70, 104027 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ashtekar, A., Krishman, B.: Phys. Rev. D 68, 104030 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. Nielsen, A.B.: Gen. Relativ. Gravit. 41, 1539 (2009)

    Article  MATH  ADS  Google Scholar 

  25. Di Criscienzo, R., Nadalini, M., Vanzo, L., Zerbini, S., Zoccatelli, G.: Phys. Lett. B 657, 107 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Criscienzo, R.D., Hayward, S.A., Nadalini, M., Vanzo, L., Zerbini, S.: Class. Quantum Gravity 27, 015006 (2010)

    Article  ADS  Google Scholar 

  27. Liu, X.M., Liu, W.B.: Int. J. Theor. Phys. 49, 1088 (2010)

    Article  MATH  Google Scholar 

  28. Liu, X.M., Zhao, Z., Liu, W.B.: Tortoise coordinate transformation on apparent horizon of a dynamical black hole. Int. J. Mod. Phys. D (2011, accepted)

  29. Jing, J.L., Wang, Y.J.: Int. J. Theor. Phys. 35, 1481 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, S.Z., Lin, L.B.: Chin. Phys. 11, 619 (2002)

    Article  ADS  Google Scholar 

  31. Yang, X.J., He, H., Zhao, Z.: Gen. Relativ. Gravit. 35, 579 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Chen, D.Y., Yang, S.Z.: Gen. Relativ. Gravit. 39, 1503 (2007)

    Article  MATH  ADS  Google Scholar 

  33. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  34. Gourgoulhon, E., Jaramillo, J.L.: New Astron. Rev. 51, 791 (2008)

    Article  ADS  Google Scholar 

  35. Nielsen, A.B., Yoon, J.H.: Class. Quantum Gravity 25, 085010 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhao, Z.: The Thermal Nature of Black Holes and the Singularity of the Space-Time. Beijing Normal Univ. Press, Beijing (1999)

    Google Scholar 

  37. York, J.W.: Quantum Theory of Gravity. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  38. Visser, M.: Int. J. Mod. Phys. D 12, 649 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Biao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XM., Cheng, SJ. & Liu, WB. General Tortoise Coordinate Transformation in a Dynamical Kerr-Newman Black Hole. Int J Theor Phys 51, 518–525 (2012). https://doi.org/10.1007/s10773-011-0930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0930-8

Keywords

Navigation