On Empirical Scrutiny of the Bohmian Model Using a Spin Rotator and the Arrival/Transit Time Distribution

Abstract

A setup that entails nonuniqueness in the quantum prediction of the arrival/transit time distribution is analysed using the Bohmian model, implying the plausibility of two distinct calculational schemes having empirically distinguishable predictions. One of them agrees with the results obtained from the probability current density based approach that has been suggested for predicting the quantum arrival/transit time distribution.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Muga, J.G., Leavens, C.R.: Phys. Rep. 338, 353 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. 2.

    Muga, J.G., Sala Mayato, R., Egusquiza, I.L.: Time in Quantum Mechanics. Springer, Berlin (2002)

    Google Scholar 

  3. 3.

    Pan, A.K., Ali, Md.M., Home, D.: Phys. Lett. A 352, 296 (2006)

    Article  MATH  ADS  Google Scholar 

  4. 4.

    Bohm, D.: Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  5. 5.

    Bohm, D.: Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  6. 6.

    Bohm, D.: Phys. Rev. 89, 458 (1953)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. 7.

    Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)

    Google Scholar 

  8. 8.

    Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  9. 9.

    Berndl et al..: Nuovo Cimento B 110, 737 (1995)

    Article  ADS  Google Scholar 

  10. 10.

    Cushing, J.T., Fine, A., Goldstein, S.: Bohmian Mechanics and Quantum Theory: An Appraisal. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  11. 11.

    Leavens, C.R.: Phys. Lett. A 178, 27 (1993)

    Article  ADS  Google Scholar 

  12. 12.

    McKinnon, W.R., Leavens, C.R.: Phys. Rev. A 51, 2748 (1995)

    Article  ADS  Google Scholar 

  13. 13.

    Muga, J.G., Brouard, S., Macias, D.: Ann. Phys. 240, 351 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  14. 14.

    Muga, J.G., Sala Mayato, R., Palao, J.P.: Superlattices Microstruct. 23, 833 (1998)

    Article  ADS  Google Scholar 

  15. 15.

    Delgado, V.: Phys. Rev. A 59, 1010 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. 16.

    Finkelstein, J.: Phys. Rev. A 59, 3218 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. 17.

    Mousavi, S.V., Golshani, M.: J. Phys. A 41, 375304 (2008)

    Article  MathSciNet  Google Scholar 

  18. 18.

    Ali, Md.M., Majumdar, A.S., Home, D., Sengupta, S.: Phys. Rev. A 68, 042105 (2003)

    Article  ADS  Google Scholar 

  19. 19.

    Brouard, S., Sala Mayato, R., Muga, J.G.: Phys. Rev. A 49, 4312 (1994)

    Article  ADS  Google Scholar 

  20. 20.

    Yamada, N., Takagi, S.: Prog. Theor. Phys. 86, 599 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  21. 21.

    Sokolovski, D., Baskin, L.M.: Phys. Rev. A 36, 4604 (1987)

    Article  ADS  Google Scholar 

  22. 22.

    Kijowski, J.: Rep. Math. Phys. 6, 361 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  23. 23.

    Halliwell, J.J., Zafiris, E.: Phys. Rev. D 57, 3351 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  24. 24.

    Grot, N., Rovelli, C., Tate, R.S.: Phys. Rev. A 54, 4676 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. 25.

    Delgado, V., Muga, J.G.: Phys. Rev. A 56, 3425 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  26. 26.

    Giannitrapani, R.: Int. J. Theor. Phys. 36, 1575 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. 27.

    Aharonov, Y., Bohm, D.: Phys. Rev. 122, 1649 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. 28.

    Baz, A.I.: Sov. J. Nucl. Phys. 5, 161 (1967)

    Google Scholar 

  29. 29.

    Buttiker, M.: Phys. Rev. B 27, 6178 (1983)

    Article  ADS  Google Scholar 

  30. 30.

    Holland, P.: Phys. Rev. A 60, 4326 (1999)

    Article  ADS  Google Scholar 

  31. 31.

    Holland, P.: Ann. Phys. (Leipz.) 12, 446 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. 32.

    Golshani, M., Akhavan, O.: J. Phys. A, Math. Gen. 34, 5259 (2001)

    MATH  ADS  MathSciNet  Google Scholar 

  33. 33.

    Ghose, P.: Pramāna 59, 2 (2002)

    Google Scholar 

  34. 34.

    Brida, G., Cagliero, E., Falzetta, G., Genovese, M., Gramegna, M., Novero, C.: J. Phys. B, At. Mol. Opt. Phys. 35, 4751 (2002)

    Article  ADS  Google Scholar 

  35. 35.

    Struyve, W., De Baere, W., De Neve, J., De Weirdt, S.: J. Phys. A, Math. Gen. 36, 1525 (2003)

    Article  MATH  ADS  Google Scholar 

  36. 36.

    Cushing, J.T.: Quantum Mechanics. University of Chicago Press, Chicago (1994), Chap. 4

    Google Scholar 

  37. 37.

    Holland, P.R.: The Quantum Theory of Motion, pp. 161–162. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  38. 38.

    Leavens, C.: Phys. Rev. A 58, 840 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  39. 39.

    Kreidl, S., Gruebl, G., Embacher, H.G.: J. Phys. A, Math. Gen. 36, 8851 (2003)

    Article  MATH  ADS  Google Scholar 

  40. 40.

    Williams, W.G.: Polarized Neutrons. Clarendon, Oxford (1988)

    Google Scholar 

  41. 41.

    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 111–116. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  42. 42.

    Pauli, W.: In: George, A. (ed.) Louis de Broglie, Physicien et Penseur, pp. 33–42. Editions Albin Michel, Paris (1953)

    Google Scholar 

  43. 43.

    Heisenberg, W.: In: Pauli, W. (ed.) Niels Bohr and the Development of Physics, pp. 12–29. Pergamon, Oxford (1955)

    Google Scholar 

  44. 44.

    Falck, J.P., Hauge, E.H.: Phys. Rev. B 38, 3287 (1988)

    Article  ADS  Google Scholar 

  45. 45.

    Hauge, E.H., Stovneng, J.A.: Rev. Mod. Phys. 61, 917 (1989)

    Article  ADS  Google Scholar 

  46. 46.

    Krenzlin, H.M., Budczies, J., Kehr, K.W.: Phys. Rev. A 53, 3749 (1996)

    Article  ADS  Google Scholar 

  47. 47.

    Allman, B.E., Cimmino, A., Klein, A.G., Opat, G.I., Kaiser, H., Werner, S.S.: Phys. Rev. Lett. 68, 2409 (1992)

    Article  ADS  Google Scholar 

  48. 48.

    Lee, W.-T., Motrunich, O., Allman, B.E., Werner, S.A.: Phys. Rev. Lett. 80, 3165 (1998)

    Article  ADS  Google Scholar 

  49. 49.

    Roy, S.M., Singh, V.: Mod. Phys. Lett. A 10, 709 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. 50.

    Roy, S.M., Singh, V.: Phys. Lett. A 255, 201 (1999)

    Article  ADS  Google Scholar 

  51. 51.

    Roy, S.M., Singh, V.: Pramāna 59, 337 (2002)

    Article  ADS  Google Scholar 

  52. 52.

    Holland, P.: Found. Phys. 28, 881 (1998)

    Article  MathSciNet  Google Scholar 

  53. 53.

    Holland, P.: Ann. Phys. (NY) 315, 503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  54. 54.

    Holland, P.: Proc. R. Soc. A 461, 3659 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. 55.

    Deotto, E., Ghirardi, G.C.: Found. Phys. 28, 1 (1998)

    Article  MathSciNet  Google Scholar 

  56. 56.

    Shimony, A.: In: Cushing, J.T., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 25–37. Notre Dame University Press, Notre Dame (1989)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Pan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pan, A.K., Home, D. On Empirical Scrutiny of the Bohmian Model Using a Spin Rotator and the Arrival/Transit Time Distribution. Int J Theor Phys 51, 374–389 (2012). https://doi.org/10.1007/s10773-011-0914-8

Download citation

Keywords

  • Bohmian model
  • Arrival/transit time distribution
  • Spin rotator