Skip to main content
Log in

Heat-to-Work Conversion by Exploiting Full or Partial Correlations of Quantum Particles

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown how information contained in the pairwise correlations (in general, partial) between atoms of a gas can be used to completely convert heat taken from a thermostat into mechanical work in a process of relaxation of the system to its thermal equilibrium state. Both classical correlations and quantum correlations (entanglement) are considered. The amount of heat converted into work is proportional to the entropy defect of the initial state of the system. For fully correlated particles, in the case of entanglement the amount of work obtained per particle is twice as large as in the case of classical correlations. However, in the case of entanglement, the amount of work does not depend on the degree of correlation, in contrast to the case of classical correlations. The results explicitly demonstrate the equivalence relation between information and work for the case of two-particle correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szilard, L.: Über die Entropieverminderung in einem thermodynamischen System bei eingriffen intelligenter Wesen (On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings). Z. Phys. 53, 840–856 (1929)

    Article  ADS  Google Scholar 

  2. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: The thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940 (1982)

    Article  Google Scholar 

  4. Levitin, L.B.: Quantum amount of information and maximum work. In: Cabile, D., Kuper, D.G., Riess, I. (eds.) Proc. 13th IUPAP Conf. Stat. Phys. Hilger, Bristol (1978)

    Google Scholar 

  5. Levitin, L.B.: Information theory for quantum systems. In: Diner, S., Lochak, G. (eds.) Information, Complexity, and Control in Quantum Physics, pp. 15–47. Springer, Berlin (1987)

    Google Scholar 

  6. Levitin, L.B.: Gibbs’ paradox and equivalence relation between quantum information and work. In: Proc. Worksh. on Physics and Computation (PhysComp’92), pp. 223–226. IEEE Comput. Soc., Los Alamitos (1993).

    Google Scholar 

  7. Levitin, L.B.: On the quantum measure of the amount of information. In: Proc. 4th National Conf. on Information Theory, Tashkent, USSR, 1969, pp.  111–116 (1969). English translation: Ann. Fond. de Broglie 21 (1996), 345–348.

    Google Scholar 

  8. Bennett, C.H., Shor, P.: Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Peres, A.: Quantum Theory, Concepts and Methods. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  10. Alicki, R., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamics of quantum informational systems—Hamiltonian description. Open Syst. Inf. Dyn. 11, 205–217 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahlsten, O., Renner, R., Rieper, E., Vedral, V.: The work value of information (2009). arXiv:0908.0424 [quant-ph]

  12. Feldmann, T., Kosloff, R.: Quantum four-stroke engine: thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 68, 016101 (2003)

    Article  ADS  Google Scholar 

  13. Horodecki, M., Oppenheim, J., Horodecki, R.: Are the laws of entanglement theory thermodynamical? Phys. Rev. Lett. 89, 240403 (2002)

    Article  ADS  Google Scholar 

  14. Lloyd, S.: Quantum-mechanical Maxwell’s demon. Phys. Rev. A 56, 3374–3382 (1997)

    Article  ADS  Google Scholar 

  15. Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: A thermodynamic approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  Google Scholar 

  16. Scully, M.: Extracting work from a single thermal bath via quantum negentropy. Phys. Rev. Lett. 87, 220601 (2001)

    Article  ADS  Google Scholar 

  17. Zureck, W.: Quantum discord and Maxwell’s demons. Phys. Rev. A 67, 012320 (2003)

    Article  ADS  Google Scholar 

  18. Schumacher, B.: Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  19. Zureck, W.: Quantum discord and Maxwell’s demons (2002). arXiv:quant-ph/0202123

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Toffoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitin, L.B., Toffoli, T. Heat-to-Work Conversion by Exploiting Full or Partial Correlations of Quantum Particles. Int J Theor Phys 50, 3844–3851 (2011). https://doi.org/10.1007/s10773-011-0886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0886-8

Keywords

Navigation