Skip to main content
Log in

Dimensional Reduction in Vector Space Methods for Natural Language Processing: Products and Projections

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We introduce vector space based approaches to natural language processing and some of their similarities with quantum theory when applied to information retrieval. We explain how dimensional reduction is called for from both a practical and theoretical point of view and how this can be achieved through choice of product or through projectors onto subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aerts, D.: General quantum modeling of combining concepts: a quantum field model in Fock space (2007). arXiv:0705.1740

  2. Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53, 314–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Czachor, M., Aerts, D.: Quantum aspects of semantic analysis and symbolic artificial intelligence, J. Phys. A. Math Gen, 37 (2004)

  4. Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S.: Using latent semantic analysis to improve information retrieval. In: Proceedings of CHI’88: Conference on Human Factors in Computing, pp. 281–285. ACM, New York (1988)

    Google Scholar 

  5. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  MATH  Google Scholar 

  6. Frieze, A.M., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-rank approximations. In: IEEE Symposium on Foundations of Computer Science, pp. 370–378 (1998)

    Google Scholar 

  7. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2000)

    Google Scholar 

  8. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. SIAM, Numer. Anal. Ser. B 2(2), 205–224 (1965)

    MathSciNet  ADS  Google Scholar 

  9. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kanerva, P., Kristofersson, J., Holst, A.: Random indexing of text samples for latent semantic analysis. In: Proceedings of the 22nd Annual Conference of the Cognitive Science Society, Mahwah, New Jersey, p. 1036 (2000)

    Google Scholar 

  11. Kontostathis, A., Pottenger, W.M.: A framework for understanding latent semantic indexing (LSI) performance. Information Processing and Management 42(1), 56–73 (2006)

    Article  Google Scholar 

  12. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychol. Rev. 104, 211–240 (1997)

    Article  Google Scholar 

  13. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Methods Instrum. Comput 28(2), 203–208 (1996)

    Article  Google Scholar 

  14. Sahlgren, M.: Vector-based semantic analysis: representing word meanings based on random labels. In: Lenci, A., Montemagni, S., Pirrelli, V. (eds.) The Acquisition and Representation of Word Meaning. Kluwer Academic, Norwell (2001)

    Google Scholar 

  15. Nerlich, B., Clarke, D.: Polysemy and Flexibility, Polysemy: Flexible Patterns of Meaning in Mind and Language. Walter de Gruyter, Berlin (2003)

    Book  Google Scholar 

  16. Plate, T.: Holographic Reduced Representations. CSLI Lecture Notes, vol. 150. CSLI Publications, Stanford (2003)

    Google Scholar 

  17. Rosch, E.: Principles of categorization. In: Rosch, E., Lloyd, B. (eds.) Cognition and Categorization. Erlbaum, Hillsdale (1978)

    Google Scholar 

  18. Rosch, E.: Prototype classification and logical classification: the two systems. In: Scholnick, E.K. (ed.) New Trends in Conceptual Representation: Challenges to Piaget’s Theory? Erlbaum, Hillsdale (1983)

    Google Scholar 

  19. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing, information retrieval and language processing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  20. Smolensky, P.: Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif. Intell. 46, 159 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Rijsbergen, C.J.: Geometry of Information Retrieval. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Widdows, D., Peters, S.: Word vectors and quantum logic: experiments with negation and disjunction. In: Proceedings of Mathematics of Language, vol. 8, pp. 141–154 (2003)

  23. Widdows, D., Higgins, M.: Geometric ordering of concepts, logical disjunction, and leaning by induction. In Compositional Connectionism in Cognitive Science (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Aerts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aerts, S. Dimensional Reduction in Vector Space Methods for Natural Language Processing: Products and Projections. Int J Theor Phys 50, 3646–3653 (2011). https://doi.org/10.1007/s10773-011-0851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0851-6

Keywords

Navigation