Skip to main content
Log in

One-Way Protocol for Two-Bit Intrinsic Random Key Distribution with Entangled Photon Pairs

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, an innovative two-way scheme for two-bit intrinsic random key distribution has been proposed, although an applicable quantum operation-gate required in this protocol is still missing. In this paper, we present a scheme for two-bit intrinsic random key distribution with entangled photon pairs in a feasible one-way configuration. By consuming one maximally entangled photon pair and one-way trip of one particle of the photon pair, first the generation of a quantum public-key pair is achieved by performing a peculiar positive operator-valued measure which is constructed by the cooperation of two distant authorized parties on one traveling qubit of the entangled pair, then two-bit intrinsic random key can be distributed by projection measurement (taking the former as the prepare stage while the latter as the measure one). Hence it can be regarded as the prepare measure protocol via entanglement resource. And the security of our scheme under various kinds of attacks is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, p. 175. IEEE Press, New York (1984)

    Google Scholar 

  2. Bennett, C.H.: Phys. Rev. Lett. 68, 3783 (1992)

    Google Scholar 

  3. Bruss, D.: Phys. Rev. Lett. 81, 3018 (1998)

    Article  ADS  Google Scholar 

  4. Bechmann-Pasuinucci, H., Gisin, N.: Phys. Rev. A 59, 4238 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  5. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bnnett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  7. Boström, K., Felbinger, T.: Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  8. Cai, Q.Y.: Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  9. Cai, Q.Y., Li, B.W.: Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  10. Wójcik, A.: Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  11. Shimizu, K., Tamaki, K., Fukasaka, H.: Phys. Rev. A 80, 022323 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. Tan, Y.G., Cai, Q.Y., Shi, T.Y.: Chin. Phys. Lett. 24, 2177 (2007)

    Article  ADS  Google Scholar 

  13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Carter, J.L., Wegman, M.N.: J. Comput. Syst. Sci. 18, 143 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldenberg, L., Vaidman, L.: Phys. Rev. Lett. 75, 1239 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Koashi, M., Imoto, N.: Phys. Rev. Lett. 79, 2383 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Hillery, M.: Phys. Rev. A 61, 022309 (2000)

    Article  ADS  Google Scholar 

  18. Cerf, N.J., Lévy, M.: van-Assche, G.: Phys. Rev. A 63, 052311 (2001)

    Article  ADS  Google Scholar 

  19. Devetak, I., Winter, A.: Phys. Rev. Lett. 93, 080501 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  20. König, R., Maurer, U., Renner, R.: IEEE Trans. Inf. Theory 51, 2391 (2005)

    Article  Google Scholar 

  21. Schumacher, B., Westmoreland, M.D.: Phys. Rev. A 56, 131 (1997)

    Article  ADS  Google Scholar 

  22. Ahlswede, R., Winter, A.: IEEE Trans. Inf. Theory 48, 569 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bennett, C.H., Brassard, G., Mermin, N.D.: Phys. Rev. Lett. 68, 5772 (1992)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Fa Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, GD., Fang, MF., Xiao, X. et al. One-Way Protocol for Two-Bit Intrinsic Random Key Distribution with Entangled Photon Pairs. Int J Theor Phys 50, 663–670 (2011). https://doi.org/10.1007/s10773-010-0590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0590-0

Keywords

Navigation