Skip to main content
Log in

Thermal Radiation of Reissner-Nordström Black Hole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By the entropy density near the event horizon, the result has been obtained that the thermal radiation of the black hole satisfies the generalized Stenfan-Boltzmann law. The derived generalized Stenfan-Boltzmann coefficient is no longer a constant, but a proportional coefficient related to the black hole mass, the black hole charge, the average radial effusion velocity of the radiation particles near the event horizon, the cut-off distance and the thin film thickness. For an extreme Reissner-Nordström black hole, radiation energy flux and radiation power are all equal to zero. Then, the generalized Stenfan-Boltzmann law will lead to a black hole remnant. In this paper, we have put forward a thermal particle model in curved space-time. By this model, the thermal radiation of the Reissner-Nordström black hole has been studied. The result shows that when the thin film thickness and the cut-off distance are both fixed for the Reissner-Nordström black hole, the radiation energy flux received by observer far away from the Reissner-Nordström black hole is proportional to the average radial effusion velocity of the radiation particles, and inversely proportional to the square of the distance between the observer and the black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. ’t Hooft, G.: Nucl. Phys. B 256, 727 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  4. Solodukhin, S.N.: Phys. Rev. D 51, 609 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  5. Li, X., Zhao, Z.: Mod. Phys. Lett. A 15, 1739 (2000)

    Article  MATH  Google Scholar 

  6. Li, X.: Phys. Lett. B 540, 9 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Li, X., Zhao, Z.: Phys. Rev. D 62, 104001 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  8. Gao, C.J., Liu, W.B.: Int. J. Theor. Phys. 39, 2221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, X., Zhao, Z.: Chin. Phys. Lett. 18, 463 (2001)

    Article  ADS  Google Scholar 

  10. Liu, W.B., Zhao, Z.: Chin. Phys. Lett. 18, 310 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  11. He, F., Zhao, Z.: Phys. Rev. D 64, 044025 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  12. He, H., Zhao, Z., Zhang, L.H.: Int. J. Theor. Phys. 41, 1781 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 15, 2752 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  14. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5024 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  15. Zhang, J.Y., Zhao, Z.: Phys. Lett. B 618, 14 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. Jiang, Q.Q., Wu, S.Q.: Phys. Lett. B 635, 151 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Zhang, J.Y.: Phys. Lett. B 668, 353 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Meng, Q.M.: Acta Phys. Sin. 52, 2102 (2003) (in Chinese)

    Google Scholar 

  19. Meng, Q.M.: Acta Phys. Sin. 54, 471 (2005) (in Chinese)

    Google Scholar 

  20. Meng, Q.M., Su, J.Q., Jiang, J.J.: Acta Phys. Sin. 56, 5077 (2007) (in Chinese)

    MathSciNet  Google Scholar 

  21. Meng, Q.M., Jiang, J.J.: Sci. China, Ser. G 51, 923 (2008)

    Article  Google Scholar 

  22. Meng, Q.M., Wang, S., Jiang, J.J., Deng, D.L.: Chin. Phys. B 17, 2811 (2008)

    Article  ADS  Google Scholar 

  23. Jiang, J.J., Meng, Q.M., Wang, S.: Chin. Phys. B 18, 457 (2009)

    Article  ADS  Google Scholar 

  24. Meng, Q.M., Jiang, J.J., Wang, S.: Acta Phys. Sin. 58, 7486 (2009) (in Chinese)

    MathSciNet  Google Scholar 

  25. Meng, Q.M., Jang, J.J., Liu, J.L., Li, Z.R.: Int. J. Theor. Phys. (2010). doi:10.1007/s10773-010-0353-y

    Google Scholar 

  26. Li, C.A., Meng, Q.M., Su, J.Q.: Acta Phys. Sin. 51, 1897 (2002) (in Chinese)

    Google Scholar 

  27. Hawking, S.W.: Phys. Rev. D 14, 2460 (1976)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Miao Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, QM., Wang, S. & Li, ZR. Thermal Radiation of Reissner-Nordström Black Hole. Int J Theor Phys 49, 2600–2606 (2010). https://doi.org/10.1007/s10773-010-0451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0451-x

Keywords

Navigation