Skip to main content
Log in

Planck Oscillators in the Background Dark Energy

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider a model for an underpinning of the universe: there are oscillators at the Planck scale in the background dark energy. Starting from a coherent array of such oscillators it is possible to get a description from elementary particles to Black Holes including the usual Hawking-Beckenstein theory. There is also a description of Gravitation in the above model which points to a unified description with electromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kiefer, C.: Quantum Gravity. Clarendon, Oxford (2004)

    MATH  Google Scholar 

  2. Regge, T., de Alfaro, V.: Potential Scattering. North Holland, Amsterdam (1965)

    MATH  Google Scholar 

  3. Roman, P.: Advanced Quantum Theory, p. 31. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  4. Bogdan, P., Rith, K.: Particles and Nuclei: An Introduction to the Physical Concepts. Springer, Berlin (1993)

    Google Scholar 

  5. Veneziano, G.: In: Huggett, S.A., et al. (eds.) The Geometric Universe. Oxford University Press, Oxford (1998)

    Google Scholar 

  6. Veneziano, G.: Phys. Rep. 9(4), 199–242 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  7. Lee, T.D.: Particle Physics and Introduction to Field Theory. Harwood Academic, Reading (1981)

    Google Scholar 

  8. Martin, B.R., Shaw, G.: Particle Physics. Wiley, New York (1992)

    Google Scholar 

  9. Sidharth, B.G.: Fuzzy, non commutative spacetime: a new paradigm for a new century. In: Sidharth, B.G., Altaisky, M.V. (eds.) Proceedings of Fourth International Symposium on “Frontiers of Fundamental Physics, pp. 97–108. Kluwer Academic/Plenum, New York (2001)

    Google Scholar 

  10. Fogleman, G.: Am. J. Phys. 55(4), 330–336 (1987)

    Article  ADS  Google Scholar 

  11. Schwarz, J.: Physics Reports 89(227) (1982)

  12. Jacob, M. (ed.) Physics Reports. North-Holland, Amsterdam (1974) reprint volume

    Google Scholar 

  13. Veneziano, G.: Quantum geometric origin of all forces in string theory. In: Huggett, S.A., et al. (eds.) The Geometric Universe, pp. 235–243. Oxford University Press, Oxford (1988)

    Google Scholar 

  14. Ramond, P.: Phys. Rev. D 3(10), 2415–2418 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  15. Kaluza, Th.: An Introduction to Kaluza-Klein Theories. Singapore, World Scientific (1984)

    Google Scholar 

  16. Greene, B.: The Elegant Universe, p. 15. Vintage, London (1999)

    MATH  Google Scholar 

  17. Madore, J.: An Introduction to Non-Commutative Differential Geometry. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  18. Laughlin, R.B.: A Different Universe. Basic Books, New York (2005)

    Google Scholar 

  19. Smolin, L.: The Trouble with Physics. Houghton Mifflin Company, New York (2006)

    MATH  Google Scholar 

  20. Sidharth, B.G.: When the Universe Took a U Turn. Singapore, World Scientific (2009)

    Book  Google Scholar 

  21. Susskind, L.: The Black Hole War. Back Bay Books, New York (2008)

    Google Scholar 

  22. Sidharth, B.G.: Thermodynamic Universe. Singapore, World Scientific (2008)

    Book  Google Scholar 

  23. Sidharth, B.G.: Chaotic Universe: From the Planck to the Hubble Scale. Nova Science, New York (2001)

    Google Scholar 

  24. Sidharth, B.G.: The Universe of Fluctuations. Springer, Netherlands (2005)

    MATH  Google Scholar 

  25. Sidharth, B.G.: Found. Phys. Lett. 17(5), 503–506 (2004)

    Article  MATH  Google Scholar 

  26. Sidharth, B.G.: Found. Phys. Lett. 15(6), 577–583 (2002)

    Article  MathSciNet  Google Scholar 

  27. Goodstein, D.L.: States of Matter. Dover, New York (1975)

    Google Scholar 

  28. Jack Ng, Y., Van Dam, H.: Mod. Phys. Lett. A 9(4), 335–340 (1994)

    Article  ADS  Google Scholar 

  29. Rosen, N.: Int. J. Theor. Phys. 32(8), 1435–1440 (1993)

    Article  Google Scholar 

  30. Sidharth, B.G.: Int. J. Mod. Phys. A 21(31), 6315 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Sidharth, B.G.: Int. J. Theor. Phys. 48(12), 3421 (2009)

    Article  MATH  Google Scholar 

  32. Cercignani, C.: Found. Phys. Lett. 11(2), 189–199 (1998)

    Article  MathSciNet  Google Scholar 

  33. Sakharov, A.D.: Sov. Phys. Dokl. 12(11), 1040–1041 (1968)

    ADS  Google Scholar 

  34. Sidharth, B.G.: Int. J. Theor. Phys. 48(8), 2427–2431 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ruffini, R., Zang, L.Z.: Basic Concepts in Relativistic Astrophysics. Singapore, World Scientific (1983)

    Google Scholar 

  36. Baez, J.: Nature 421, 702–703 (2003)

    Article  ADS  Google Scholar 

  37. Sidharth, B.G.: In: Hartnett, J., et al. (eds.) Alternative Routes to Gravitation in Frontiers of Fundamental Physics. AIP, New York (2010)

    Google Scholar 

  38. Sidharth, B.G.: Energy and mass generation. arXiv:1003.2330

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Sidharth.

Additional information

Based on the Paper at the Max Born Symposium, 2009, Wroclaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidharth, B.G. Planck Oscillators in the Background Dark Energy. Int J Theor Phys 49, 2476–2485 (2010). https://doi.org/10.1007/s10773-010-0433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0433-z

Keywords

Navigation