Dirac Oscillator in Noncommutative Phase Space

Abstract

We study the Dirac oscillators in a noncommutative phase space. The results show that the energy gap of Dirac oscillator was changed by noncommutative effect. In addition, we obtain the non-relativistic limit of the energy spectrum.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Connes, A., Douglas, M.R., Schwarz, A.: J. High Energy Phys. 9802, 003 (1998). arXiv:hep-th/9808042

    Article  MathSciNet  ADS  Google Scholar 

  2. 2.

    Seiberg, N., Witten, E.: J. High Energy Phys. 9909, 032 (1999). arXiv:hep-th/9908142

    Article  MathSciNet  ADS  Google Scholar 

  3. 3.

    Susskind, L.: arXiv:hep-th/0101029

  4. 4.

    Mezincescu, L.: arXiv:hep-th/0007046

  5. 5.

    Nair, V.P.: Phys. Lett. B 505, 249 (2001). arXiv:hep-th/0008027

    MATH  Article  MathSciNet  ADS  Google Scholar 

  6. 6.

    Chaichian, M., et al.: Phys. Rev. Lett. 86, 2716 (2001). arXiv:hep-th/0010175

    Article  ADS  Google Scholar 

  7. 7.

    Jellal, A.: Orbital magnetism of two-dimension noncommutative confined system. arXiv:hep-th/0105303

  8. 8.

    Smailagic, A., Spallucci, E.: Phys. Rev. D 65, 107701 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  9. 9.

    Smailagic, A., Spallucci, E.: J. Phys. A 35, L363 (2002)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  10. 10.

    Djemaï, A.E.F., Smaïl, H.: On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. 41(6), 837–844 (2004). arXiv:hep-th/0309006

    MATH  MathSciNet  Google Scholar 

  11. 11.

    Itô, D., Mori, K., Carriere, E.: Nuovo Cimento A 51, 1119 (1967)

    Article  ADS  Google Scholar 

  12. 12.

    Beckers, J., Debergha, N., Nikitin, A.G.: J. Math. Phys. 33, 3387 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  13. 13.

    Bednar, M., Ndimubandi, J., Nikitin, A.G.: Can. J. Phys. 75, 283 (1997)

    Article  ADS  Google Scholar 

  14. 14.

    Nedjadi, Y., Barrett, R.C.: J. Phys. A: Math. Gen. 27, 4301 (1994)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  15. 15.

    Nedjadi, Y., Barrett, R.C.: J. Phys. A: Math. Gen. 31, 6717 (1998)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  16. 16.

    Kulikov, D.A., Tutik, R.S., Yaroshenko, A.P.: Mod. Phys. Lett. A 26, 12 (2004)

    Google Scholar 

  17. 17.

    Boumali, A., Chetouani, L.: Phys. Lett. A 346, 261 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  18. 18.

    Boumali, A.: J. Math. Phys. 49, 022302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. 19.

    Mirza, B., Mohadesi, M.: Commun. Theor. Phys. 42, 664 (2004) (Beijing, China)

    MATH  MathSciNet  Google Scholar 

  20. 20.

    Falek, M., Merad, M.: Commun. Theor. Phys. 50, 587 (2008) (Beijing, China)

    Article  MathSciNet  Google Scholar 

  21. 21.

    Zhang, J.-Z.: Phys. Lett. B 584, 204 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  22. 22.

    Bertolami, O., Rosa, J.G., de Aragao, C.M.L., Castorina, P., Zappalà, D.: Phys. Rev. D 72, 025010 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. 23.

    Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Phys. Rev. Lett. 86, 2716 (2001)

    Article  ADS  Google Scholar 

  24. 24.

    Carroll, S.M., Harvey, J.A., Kostelecky, V.A., Lane, C.D., Okamoto, T.: Phys. Rev. Lett. 87, 141601 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  25. 25.

    Hagen, C.R.: Phys. Rev. Lett. 64, 503 (1990)

    MATH  Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tao Jing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cai, S., Jing, T., Guo, G. et al. Dirac Oscillator in Noncommutative Phase Space. Int J Theor Phys 49, 1699–1705 (2010). https://doi.org/10.1007/s10773-010-0349-7

Download citation

Keywords

  • Noncommutative phase space
  • Dirac oscillator
  • Exact solutions