Skip to main content
Log in

A Geometric Approach to Time Evolution Operators of Lie Quantum Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrödinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, H.R.: Classical and quantum systems with time-dependent harmonic-oscillator type Hamiltonians. Phys. Rev. Lett. 18, 510–512 (1967)

    Article  ADS  Google Scholar 

  2. Markov, M.A.: Invariants and the Evolution of Non-stationary Quantum Systems. Nova Science Publisher, New York (1989). (Russian edition 1987)

    Google Scholar 

  3. Korsch, H.J.: Dynamical invariants and time-dependent harmonic systems. Phys. Lett. A 74, 294–296 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  4. Yeon, K.H., Kim, H.J., Um, C.I., George, T.F., Pandey, L.N.: Wave function in the invariant representation and squeezed-state function of the time-dependent harmonic oscillator. Phys. Rev. A 50, 1035–1039 (1994)

    Article  ADS  Google Scholar 

  5. Cerveró, J.M., Lejarreta, J.D.: SO(2,1)-invariant systems and the Berry phase. J. Phys. A Math. Gen. 22, L663–L666 (1989)

    Article  ADS  Google Scholar 

  6. Landovitz, L.F., Levine, A.M., Schreiber, W.M.: Time-dependent harmonic oscillators. Phys. Rev. A 20, 1162–1168 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  7. Maamache, M., Choutri, H.: Exact evolution of the generalized damped harmonic oscillator. J. Phys. A Math. Gen. 33, 6203–6210 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Lewis, H.R. Jr., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458–1473 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  9. Peskin, U., Kosloff, R., Moiseyev, N.: The solution of the time dependent Schrödinger equation by the (t,t″) method: The use of global polynomial propagators for time-dependent Hamiltonians. J. Chem. Phys. 100, 8849–8855 (1994)

    Article  ADS  Google Scholar 

  10. Maamache, M., Provost, J.P., Vallée, G.: Unitary equivalence and phase properties of the quantum parametric and generalized harmonic oscillator. Phys. Rev. A 59, 1777–1780 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Maamache, M., Bencheikh, K., Hachemi, H.: Comment on “Harmonic oscillator with time-dependent mass and frequency and a perturbative potential”. Phys. Rev. A 59, 3124–3126 (1999)

    Article  ADS  Google Scholar 

  12. Yeon, K.H., Kim, D.H., Um, C.I., George, T.F., Pandey, L.N.: Relations of canonical and unitary transformations for a general time-dependent quadratic Hamiltonian system. Phys. Rev. A 55, 4023–4029 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ma, X., Rhodes, W.: Squeezing in harmonic oscillators with time-dependent frequencies. Phys. Rev. A 39, 1941–1947 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. Borzov, V.V., Damaskinsky, E.V.: Coherent states and the Legendre oscillator. Zapiski Nauchn. Semin. POMI 285, 39–52 (2002)

    Google Scholar 

  15. Nieto, M.M., Truax, D.R.: Displacement-operator squeezed states I. Time-dependent systems having isomorphic symmetry algebras. J. Math. Phys. 38, 84–97 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Pedrosa, I.A., Guedes, I.: Quantum states of a generalized time-dependent inverted harmonic oscillator. Int. J. Mod. Phys. B 18, 1379–1385 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Jáuregui, R.: Non-perturbative and perturbative treatment of parametric heating in atom traps. Phys. Rev. A 64, 053408 (2001)

    Article  ADS  Google Scholar 

  18. Abdalla, M.S.: Quantum treatment of the time-dependent coupled oscillators. J. Phys. A Math. Gen. 29, 1997–2012 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Agarwal, G.S., Kumar, S.A.: Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states. Phys. Rev. Lett. 67, 3665–3668 (1991)

    Article  ADS  Google Scholar 

  20. Kohen, D., Marston, C.C., Tannor, D.J.: Phase space approach to theories of quantum dissipation. J. Chem. Phys. 107, 5236–5253 (1997)

    Article  ADS  Google Scholar 

  21. Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990)

    Article  ADS  Google Scholar 

  22. Cook, R.J., Shankland, D.G., Wells, A.L.: Quantum theory of particle motion in a rapidly oscillating field. Phys. Rev. A 31, 564–567 (1985)

    Article  ADS  Google Scholar 

  23. Brown, L.S.: Quantum motion in a Paul trap. Phys. Rev. Lett. 66, 527–529 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Nieto, M.M., Truax, D.R.: Symmetries and solutions of the three-dimensional Paul trap. Opt. Express 8, 123–130 (2001)

    Article  ADS  Google Scholar 

  25. Huang, M.-C., Wu, M.-C.: The Caldirola–Kanai model and its equivalent theories for a damped oscillator. Chinese J. Phys. 36, 566–587 (1998)

    ADS  MathSciNet  Google Scholar 

  26. Gitterman, M.: Simple calculation of the wavefunctions of a time-dependent harmonic oscillator. Eur. J. Phys. 19, 581–582 (1998)

    Article  MATH  Google Scholar 

  27. Cariñena, J.F., de Lucas, J., Rañada, M.F.: Integrability of Lie systems and some of its applications in physics. J. Phys. A Math. Theor. 41, 304029 (2008)

    Article  Google Scholar 

  28. Cariñena, J.F., de Lucas, J.: Lie systems and integrability conditions of differential equations and some of its applications. In: Differential Geometry and Its Applications. Proceedings of the 10th International Conference on DGA2007, Olomouc, Czech Republic, 27–31 August 2007

  29. Guedes, I.: Solution of the Schrödinger equation from the time-dependent linear potential. Phys. Rev. A 63, 034102 (2001)

    Article  ADS  Google Scholar 

  30. Song, D.-Y.: Unitary relation between a harmonic oscillator of time-dependent frequency and a simple harmonic oscillator with or without an inverse square potential. Phys. Rev. A 62, 014103 (2000)

    Article  ADS  Google Scholar 

  31. Lie, S.: Vorlesungen ber continuierliche Gruppen mit Geometrischen und anderen Anwendungen. Teubner, Leipzig (1893). Edited and revised by G. Scheffers

    Google Scholar 

  32. Cariñena, J.F., Grabowski, J., Marmo, G.: Lie–Scheffers Systems: A Geometric Approach. Bibliopolis, Napoli (2000)

    MATH  Google Scholar 

  33. Cariñena, J.F., Grabowski, J., Ramos, A.: Reduction of time-dependent systems admitting a superposition principle. Acta Appl. Math. 66, 67–87 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Cariñena, J.F., Grabowski, J., Marmo, G.: Some applications in physics of differential equation systems admitting a superposition rule. Rep. Math. Phys. 48, 47–58 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Cariñena, J.F., Ramos, A.: Applications of Lie systems in quantum mechanics and control theory. In: Classical and Quantum Integrability. Banach Center Publications, vol. 59, pp. 143–162 (2003)

  36. Cariñena, J.F., Grabowski, J., Marmo, G.: Superposition rules. Lie theorem and partial differential equations. Rep. Math. Phys. 60, 237–258 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Wei, J., Norman, E.: Lie algebraic solution of linear differential equations. J. Math. Phys. 4, 575–581 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Wei, J., Norman, E.: On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Am. Math. Soc. 15, 327–334 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  39. Anderson, R.L.: A nonlinear superposition principle admitted by coupled Riccati equations of the projective type. Lett. Math. Phys. 4, 1–7 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Dattoli, G., Torre, A.: Cayley–Klein parameters and evolution of two and three level systems and squeezed states. J. Math. Phys. 31, 236–240 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  41. Harnad, J., Winternitz, P., Anderson, R.L.: Superposition principles for matrix Riccati equations. J. Math. Phys. 24, 1062–1072 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Winternitz, P.: Lie groups and solutions of nonlinear differential equations. In: Wolf, K.B. (ed.) Nonlinear Phenomena. Lecture Notes in Physics, vol. 189. Springer, New York (1983)

    Chapter  Google Scholar 

  43. del Olmo, M.A., Rodríguez, M.A., Winternitz, P.: Simple subgroups of simple Lie groups and nonlinear differential equations with superposition principles. J. Math. Phys. 27, 14–23 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. del Olmo, M.A., Rodríguez, M.A., Winternitz, P.: Superposition formulas for rectangular matrix Riccati equations. J. Math. Phys. 28, 530–535 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Beckers, J., Hussin, V., Winternitz, P.: Complex parabolic subgroups of G 2 and nonlinear differential equations. Lett. Math. Phys. 11, 81–86 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. Beckers, J., Hussin, V., Winternitz, P.: Nonlinear equations with superposition formulas and the exceptional group G 2. I. Complex and real forms of \(\mathfrak{g}_{2}\) and their maximal subalgebras. J. Math. Phys. 27, 2217–2227 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Beckers, J., Gagnon, L., Hussin, V., Winternitz, P.: Superposition formulas for nonlinear superequations. J. Math. Phys. 31, 2528–2534 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Havlícec, M., Posta, S., Winternitz, P.: Nonlinear superposition formulas based on imprimitive group action. J. Math. Phys. 40, 3104–3122 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. Cariñena, J.F., Marmo, G., Nasarre, J.: The nonlinear superposition principle and the Wei–Norman method. Int. J. Mod. Phys. A 13, 3601–3627 (1998)

    Article  MATH  ADS  Google Scholar 

  50. Cariñena, J.F., Ramos, A.: Integrability of the Riccati equation from a group theoretical viewpoint. Int. J. Mod. Phys. A 14, 1935–1951 (1999)

    Article  MATH  ADS  Google Scholar 

  51. Liebermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. Reidel, Dordrecht (1987)

    Google Scholar 

  52. Cariñena, J.F., Ramos, A.: A new geometric approach to Lie systems and physical applications. Acta Appl. Math. 70, 43–69 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  53. Campos, I., Jiménez, J.L., del Valle, G.: Canonical treatment of the rocket with friction linear in the velocity. Eur. J. Phys. 24, 469–479 (2003)

    Article  MATH  Google Scholar 

  54. Feng, M.: Complete solution of the Schrödinger equation for the time-dependent linear potential. Phys. Rev. A 64, 034101 (2001)

    Article  ADS  Google Scholar 

  55. Cariñena, J.F., Ramos, A.: Lie systems and connections in fiber bundles: applications in quantum mechanics. In: Bures, J. et al. (eds.) 9th Int. Conf. Diff. Geom and Appl., pp. 437–452. Matfyzpress, Praga (2005).

    Google Scholar 

  56. Boya, L.J., Cariñena, J.F., Gracia-Bondía, J.M.: Symplectic structure of the Aharonov-Anandan geometric phase. Phys. Lett. A 161, 30–34 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  57. Balasubramanian, S.: Time-development operator method in quantum mechanics. Am. J. Phys. 69, 508–511 (2001)

    Article  ADS  Google Scholar 

  58. Wolf, K.B.: On time-dependent quadratic Hamiltonians. SIAM J. Appl. Math. 40, 419–431 (1980)

    Article  Google Scholar 

  59. Asorey, M., Cariñena, J.F., Paramio, M.: Quantum evolution as a parallel transport. J. Math. Phys. 23, 1451–1458 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Fernández, M., Moya, H.: Solution of the Schrödinger equation for time dependent 1D harmonic oscillators using the orthogonal functions invariant. J. Phys. A Math. Gen. 36, 2069–2076 (2003)

    Article  MATH  ADS  Google Scholar 

  61. Um, C.-I., Yeon, K.-H., George, T.F.: The quantum damped harmonic oscillator. Phys. Rep. 362, 63–192 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. Ciftja, O.: A simple derivation of the exact wave-function of a harmonic oscillator with time-dependent mass and frequency. J. Phys. A Math. Gen. 32, 6385–6389 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. Feng, M., Wang, K.: Exact solution for the motion of a particle in a Paul trap. Phys. Lett. A 197, 135–138 (1995)

    Article  ADS  Google Scholar 

  64. Yuen, H.P.: Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226–2243 (1976)

    Article  ADS  Google Scholar 

  65. Yi, X.X., Sun, C.P.: Factoring the unitary evolution operator and quantifying entanglement. Phys. Lett. A 262, 287–295 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. Yan, F., Yang, L., Li, B.: Formal exact solution for the Heisenberg spin system in a time dependent magnetic field and Aharonov–Anandan phase. Phys. Lett. A 251, 289–293 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  67. Feng, M., Wang, K., Wu, J., Shi, L.: Approximate study of the quantum statistics of two Paul trapped ions. Phys. Lett. A 230, 51–59 (1997)

    Article  ADS  Google Scholar 

  68. Jing, H., Xie, B.-H., Shi, Q.-Y.: Perturbed Landau system and non-adiabatic Berry’s phase in two dimensions. Phys. Lett. A 277, 295–298 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. Cariñena, J.F., Ramos, A.: Riccati equation, factorization method and shape invariance. Rev. Math. Phys. 12, 1279–1304 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  70. Cariñena, J.F., Nasarre, J.: Lie–Scheffers systems in optics. J. Opt. B Quantum Semiclass. Opt. 2, 94–99 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  71. Cariñena, J.F., Fernández, D.J., Ramos, A.: Group theoretical approach to the intertwined Hamiltonians. Ann. Phys. (N.Y.) 292, 42–66 (2001)

    Article  MATH  ADS  Google Scholar 

  72. Wu, J.-S., Bai, Z.-M., Ge, M.-L.: The nonadiabatic Berry phase in two dimensions: the Calogero model trapped in a time-dependent external field. J. Phys. A Math. Gen. 32, L381–L386 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Cariñena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cariñena, J.F., de Lucas, J. & Ramos, A. A Geometric Approach to Time Evolution Operators of Lie Quantum Systems. Int J Theor Phys 48, 1379–1404 (2009). https://doi.org/10.1007/s10773-008-9909-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-008-9909-5

Keywords

Navigation