Skip to main content
Log in

Stability of Circular Orbits in General Relativity: a Phase Space Analysis

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Phase space method provides a novel way for deducing qualitative features of nonlinear differential equations without actually solving them. The method is applied here for analyzing stability of circular orbits of test particles in various physically interesting environments. The approach is shown to work in a revealing way in Schwarzschild spacetime. All relevant conclusions about circular orbits in the Schwarzschild-de Sitter spacetime are shown to be remarkably encoded in a single parameter. The analysis in the rotating Kerr black hole readily exposes information as to how stability depends on the ratio of source rotation to particle angular momentum. As a wider application, it is exemplified how the analysis reveals useful information when applied to motion in a refractive medium, for instance, that of optical black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations, 3rd edn. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  2. Reiss, A.G., et al.: Observational evidence from Supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  3. Garnavich, P.M., et al.: Supernova limits on the cosmic equation of state. Astrophys. J. 509, 74–79 (1998)

    Article  ADS  Google Scholar 

  4. Perlmutter, S.J., et al.: Discovery of a supernova explosion at half the age of the universe and its cosmological implications. Nature (London) 391, 51–54 (1998)

    Article  ADS  Google Scholar 

  5. Stuchlík, Z., Hledík, S.: Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti de Sitter spacetimes. Phys Rev. D 60, 044006 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Evans, J., Rosenquist, M.: F=ma optics. Am. J. Phys. 54, 876–883 (1986)

    Article  ADS  Google Scholar 

  7. Evans, J., Nandi, K.K., Islam, A.: The optical-mechanical analogy in general relativity: exact Newtonian forms for the equations of motion of particles and photons. Gen. Relativ. Gravit. 28, 413–439 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Nandi, K.K., Islam, A.: On the optical-mechanical analogy in general relativity. Am. J. Phys. 63, 251–256 (1995)

    Article  ADS  Google Scholar 

  9. Nandi, K.K., Migranov, N.G., Evans, J., Amedeker, M.K.: Planetary and light motions from Newtonian theory. An amusing exercise. Eur. J. Phys. 27, 429–435 (2005)

    Article  Google Scholar 

  10. Alsing, P.M.: The optical-mechanical analogy for stationary metrics in general relativity. Am. J. Phys. 66, 779–790 (1998)

    Article  ADS  Google Scholar 

  11. Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature (London) 397, 594–598 (1999)

    Article  ADS  Google Scholar 

  12. Nandi, K.K., Zhang, Y.Z., Alsing, P.M., Evans, J., Bhadra, A.: Analogue of the Fizeau effect in an effective optical medium. Phys. Rev. D 67, 025002 (2003)

    Article  ADS  Google Scholar 

  13. Leonhardt, U., Piwnicki, P.: Optics of nonuniformly moving media. Phys. Rev. A 60, 4301–4312 (1999)

    Article  ADS  Google Scholar 

  14. Leonhardt, U., Piwnicki, P.: Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822–825 (2000)

    Article  ADS  Google Scholar 

  15. Visser, M.: Comments on “Relativistic effects of light in moving media with extremely low group velocity”. Phys. Rev. Lett. 85, 5252 (2000)

    Article  ADS  Google Scholar 

  16. Marklund, M., Anderson, D., Cattani, F., Lisak, M., Lundgren, L.: Fermat’s principle and variational analysis of an optical model for light propagation exhibiting a critical radius. Am. J. Phys. 70, 680–683 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ellis, H.G.: Ether flow through a drainhole: A particle model in general relativity. J. Math. Phys. 14, 104–108 (1973)

    Article  ADS  Google Scholar 

  18. Ellis, H.G.: Errata. J. Math. Phys. 15, 520 (1974)

    Article  ADS  Google Scholar 

  19. Nandi, K.K., Islam, A., Evans, J.: Brans wormholes. Phys. Rev. D 55, 2497–500 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  20. Nandi, K.K., Bhattacharjee, B., Alam, S.M.K., Evans, J.: Brans-Dicke wormholes in the Jordan and Einstein frames. Phys. Rev. D 57, 823–828 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palit, A., Panchenko, A., Migranov, N.G. et al. Stability of Circular Orbits in General Relativity: a Phase Space Analysis. Int J Theor Phys 48, 1271–1289 (2009). https://doi.org/10.1007/s10773-008-9899-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-008-9899-3

Keywords

Navigation