Skip to main content
Log in

Early Universe in Scalar-Tensor Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the flat Robertson–Walker model in scalar-tensor theory proposed by Lau and Prokhovnik. In this model, the field equations are solved by using “gamma-law” form of equation of state p=(γ−1)ρ, where the adiabatic parameter ‘gamma’ (γ) varies continuously as the universe expands. Our aim is to study how the adiabatic parameter γ should vary so that in the course of its evolution the universe goes through a transition from an inflationary to a radiation-dominated phase. A unified one parameter function of γ has been considered to describe the two early phases of evolution of universe. The solutions show the power-law expansion and cosmological constant is found to be positive and decreasing function of cosmic time. The solutions are compatible with the Dirac’s large number hypothesis. The deceleration parameter has been presented in a unified manner in terms of scale factor, which describes the inflation of the model. The nature of singularity and the physical properties have been discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel Rahman, A.-M.M.: Phys. Rev. D 45, 3497 (1992)

    Article  ADS  Google Scholar 

  2. Arbab, A.I.: Gen. Relativ. Gravit. 29, 61 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Beesham, A.: Aust. J. Phys. 40, 23 (1987)

    ADS  Google Scholar 

  4. Berman, M.S.: Phys. Rev. D 43, 1075 (1991)

    Article  ADS  Google Scholar 

  5. Berman, M.S.: Gen. Relativ. Gravit. 23, 465 (1991)

    Article  ADS  Google Scholar 

  6. Bertolami, O.: Nuovo Cimento B 93, 36 (1986)

    Article  ADS  Google Scholar 

  7. Bertolami, O.: Fortschr. Phys. 34, 829 (1986)

    Google Scholar 

  8. Carvalho, J.C., Lima, J.A.S., Waga, I.: Phys. Rev. 46, 2404 (1992)

    ADS  Google Scholar 

  9. Carvalho, J.C.: Int. J. Theor. Phys. 35, 2019 (1996)

    Article  MATH  Google Scholar 

  10. Chen, W., Wu, Y.S.: Phys. Rev. D 41, 695 (1990)

    Article  ADS  Google Scholar 

  11. Dirac, P.A.M.: Proc. R. Soc. Lond. A 165, 199 (1938)

    ADS  Google Scholar 

  12. Dirac, P.A.M.: The General Theory of Relativity. New York, Wiley (1975)

    Google Scholar 

  13. Dirac, P.A.M.: Proc. R. Soc. Lond. A 365, 19 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  14. Israelit, M., Rosen, N.: Astrophys. Space Sci. 204, 317 (1993)

    Article  MATH  ADS  Google Scholar 

  15. Jordan, P.: Z. Phys. 157, 112 (1959)

    Article  ADS  Google Scholar 

  16. Lau, Y.K.: Aust. J. Phys. 38, 547 (1985)

    ADS  Google Scholar 

  17. Lau, Y.K., Prokhovnik, S.J.: Aust. J. Phys. 39, 339 (1986)

    ADS  Google Scholar 

  18. Lima, J.A.S., Maia, J.M.F.: Mod. Phys. Lett. A 48, 591 (1993)

    Article  ADS  Google Scholar 

  19. Maharaj, S.D., Beesham, A.: J. Astrophys. Astron. 9, 67 (1988)

    Article  ADS  Google Scholar 

  20. Maharaj, S.D., Naidoo, R.: Astrophys. Space Sci. 208, 261 (1993)

    Article  MATH  ADS  Google Scholar 

  21. Overduin, J.M., Cooperstock, F.I.: Phys. Rev. D 58, 043506 (1998)

    Article  ADS  Google Scholar 

  22. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  23. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  24. Riess, A.G., et al.: Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  25. Singh, C.P.: Int. J. Theor. Phys. 45, 519 (2006)

    Article  Google Scholar 

  26. Singh, C.P.: Mod. Phys. Lett. A 21, 1803 (2006)

    Article  MATH  ADS  Google Scholar 

  27. Singh, C.P.: Int. J. Mod. Phys. A 22, 2415 (2007)

    Article  MATH  Google Scholar 

  28. Vishwakarma, R.G.: Mon. Not. R. Astron. Soc. 331, 776 (2002)

    Article  ADS  Google Scholar 

  29. Zeldovich, Y.B.: Sov. Phys. Usp. 11, 381 (1968)

    Article  ADS  Google Scholar 

  30. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, C.P., Beesham, A. Early Universe in Scalar-Tensor Theory. Int J Theor Phys 47, 2344–2352 (2008). https://doi.org/10.1007/s10773-008-9668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-008-9668-3

Keywords

Navigation