International Journal of Theoretical Physics

, Volume 47, Issue 6, pp 1776–1783 | Cite as

Atom Capture by Nanotube and Scaling Anomaly

Article

Abstract

The existence of bound state of the polarizable neutral atom in the inverse square potential created by the electric field of a single walled charged carbon nanotube (SWNT) is shown to be theoretically possible. The consideration of inequivalent boundary conditions due to self-adjoint extensions lead to this nontrivial bound state solution. It is also shown that the scaling anomaly is responsible for the existence of such bound state. Binding of the polarizable atoms in the coupling constant interval η2∈[0,1) may be responsible for the smearing of the edge of steps in quantized conductance, which has not been considered so far in the literature.

Keywords

Atom bound state Self-adjoint extensions Scaling anomaly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ristroph, T., Goodsell, A., Golovchenko, J.A., Hau, L.V.: Phys. Rev. Lett. 94, 066102 (2005) CrossRefADSGoogle Scholar
  2. 2.
    Denschlag, J., Umshaus, G., Schmiedmayer, J.: Phys. Rev. Lett. 81, 737 (1998) CrossRefADSGoogle Scholar
  3. 3.
    Arimondo, E., Philips, W.D., Strumia, F. (eds.): Laser Manipulation of Atoms and Ions. Proceedings of the International School of Physics “Enrico Fermi”. North-Holland, Amsterdam (1992) Google Scholar
  4. 4.
    Chu, S.: Rev. Mod. Phys. 70, 685 (1998) CrossRefADSGoogle Scholar
  5. 5.
    Cohen-Tannoudji, C.N.: Rev. Mod. Phys. 70, 707 (1998) CrossRefADSGoogle Scholar
  6. 6.
    Phillips, W.D.: Rev. Mod. Phys. 70, 721 (1998) CrossRefADSGoogle Scholar
  7. 7.
    Hau, L.V., Burns, M.M., Golovchenko, J.A.: Phys. Rev. A 45, 6468 (1992) CrossRefADSGoogle Scholar
  8. 8.
    Hau, L.V., Burns, M.M., Golovchenko, J.A.: Phys. Rev. Lett. 74, 3138 (1995) CrossRefADSGoogle Scholar
  9. 9.
    Weinstein, J.D., Libbrecht, K.G.: Phys. Rev. A 52, 4004 (1995) CrossRefADSGoogle Scholar
  10. 10.
    Schmiedmayer, J.: Appl. Phys. B 60, 169 (1995) CrossRefADSGoogle Scholar
  11. 11.
    Denschlag, J., Schmiedmayer, J.: Europhys. Lett. 38, 405 (1997) CrossRefADSGoogle Scholar
  12. 12.
    Gong, J., Ma, A., Rice, S.A.: Phys. Rev. A 72, 063410 (2005) CrossRefADSGoogle Scholar
  13. 13.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, London (1959) Google Scholar
  14. 14.
    Case, K.M.: Phys. Rev. 80, 797 (1950) MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953) MATHGoogle Scholar
  16. 16.
    Tkachuk, V.M.: Phys. Rev. A 60, 4715 (1999) CrossRefADSGoogle Scholar
  17. 17.
    Basu-Mallick, B., Ghosh, P.K., Gupta, K.S.: Nucl. Phys. B 659, 437 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Basu-Mallick, B., Ghosh, P.K., Gupta, K.S.: Phys. Lett. A 311, 87 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Gupta, K.S.: Mod. Phys. Lett. A 18, 2355 (2003) MATHCrossRefADSGoogle Scholar
  20. 20.
    Reed, M., Simon, B.: Fourier Analysis, Self-Adjointness. Academic, New York (1975) MATHGoogle Scholar
  21. 21.
    Dunford, N., Schwartz, J.T.: Linear Operators, Spectral Theory, Self Adjoint Operators in Hilbert Space, Part 2. Wiley-Interscience, New York (1988) Google Scholar
  22. 22.
    Feher, L., Tsutsui, I., Fulop, T.: Nucl. Phys. B 715, 713 (2005) MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Falomir, H., Muschietti, M.A., Pisani, P.A.G.: J. Math. Phys. 45, 4560 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Falomir, H., Muschietti, M.A., Pisani, P.A.G., Seeley, R.: J. Phys. A 36, 9991 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Falomir, H., Pisani, P.A.G., Wipf, A.: J. Phys. A 35, 5427 (2002) MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Basu-Mallick, B., Gupta, K.S.: Phys. Lett. A 292, 36 (2001) MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Birmingham, D., Gupta, K.S., Sen, S.: Phys. Lett. B 505, 191 (2001) MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Gupta, K.S., Sen, S.: Phys. Lett. B 526, 121 (2002) MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Meljanac, S., Samsarov, A., Basu-Mallick, B., Gupta, K.S.: Eur. Phys. J. C 49, 875 (2007) CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Camblong, H.E., Epele, L.N., Fanchiotti, H., Canal, C.A.G.: Phys. Rev. Lett. 87, 220402 (2001) CrossRefADSGoogle Scholar
  31. 31.
    Camblong, H.E., Ordonez, C.R.: Phys. Rev. D 68, 125013 (2003) CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Giri, P.R., Gupta, K.S., Meljanac, S., Samsarov, A.: hep-th/0703121 (2007) Google Scholar
  33. 33.
    Esteve, J.G.: Phys. Rev. D 34, 674 (1986) CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Esteve, J.G.: Phys. Rev. D 66, 125013 (2002) CrossRefADSGoogle Scholar
  35. 35.
    Abromowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1970) Google Scholar
  36. 36.
    Gupta, K.S., Rajeev, S.G.: Phys. Rev. D 48, 5940 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Theory DivisionSaha Institute of Nuclear PhysicsCalcuttaIndia

Personalised recommendations