Skip to main content
Log in

A Relativistic Gauge Theory of Nonlinear Quantum Mechanics and Newtonian Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A new kind of gauge theory is introduced, where the minimal coupling and corresponding covariant derivatives are defined in the space of functions pertaining to the functional Schrödinger picture of a given field theory. While, for simplicity, we study the example of a \(\mathcal{U}(1)\) symmetry, this kind of gauge theory can accommodate other symmetries as well. We consider the resulting relativistic nonlinear extension of quantum mechanics and show that it incorporates gravity in the (0+1)-dimensional limit, similar to recently studied Schrödinger-Newton equations. Gravity is encoded here into a universal nonlinear extension of quantum theory. A probabilistic interpretation (Born’s rule) holds, provided the underlying model is scale free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  2. Bastin, T. (ed.): Quantum Theory and Beyond. Cambridge University Press, Cambridge (1971)

    Google Scholar 

  3. Adler, S.L.: Stud. Hist. Philos. Mod. Phys. 34, 135 (2003)

    Article  Google Scholar 

  4. Pearle, P.: How stands collapse II, arXiv: quant-ph/0611212

  5. Bassi, A.: J. Phys.: Conf. Ser. 67, 012013 (2007)

    Article  ADS  Google Scholar 

  6. Elze, H.-T.: Int. J. Quantum Inform. 5, 215 (2007)

    Article  MATH  Google Scholar 

  7. Elze, H.-T.: In: D’Elia, M., Konishi, K., Meggiolaro, E., Rossi, P. (eds.) A Sense of Beauty in Physics—Festschrift for A. Di Giacomo, p. 275. Pisa Univ. Press, Pisa (2006), arXiv: quant-ph/0604142

    Google Scholar 

  8. Kibble, T.W.B.: Commun. Math. Phys. 64, 73 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kibble, T.W.B., Randjbar-Daemi, S.: J. Phys. A: Math. Gen. 13, 141 (1980)

    Article  ADS  Google Scholar 

  10. Kiefer, C.: Quantum Gravity. Clarendon Press, Oxford (2004)

    MATH  Google Scholar 

  11. Bialynicki-Birula, I., Mycielski, J.: Ann. Phys. (N.Y.) 100, 62 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  12. Weinberg, S.: Phys. Rev. Lett. 62, 485 (1989)

    Article  ADS  Google Scholar 

  13. Weinberg, S.: Ann. Phys. (N.Y.) 194, 336 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. Doebner, H.-D., Goldin, G.A.: Phys. Lett. A 162, 397 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. Doebner, H.-D., Goldin, G.A.: Phys. Rev. A 54, 3764 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. Doebner, H.-D., Goldin, G.A.: Inst. Phys. Conf. Ser. 185, 243 (2005)

    Google Scholar 

  17. Doebner, H.-D., Goldin, G.A., Nattermann, P.: J. Math. Phys. 40, 49 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Floreanini, R., Jackiw, R.: Phys. Rev. D 37, 2206 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kiefer, C.: Phys. Rev. D 47, 5414 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. Barbour, J.: Phys. Rev. D 47, 5422 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  21. ’t Hooft, G.: J. Stat. Phys. 53, 323 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. ’t Hooft, G.: Class. Quantum Gravity 16, 3263 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. ’t Hooft, G.: Quantum mechanics and determinism. In: Frampton, P., Ng, J. (eds.) Proc. of the Eighth Int. Conf. on “Particles, Strings and Cosmology”, p. 275. Rinton Press, Princeton (2001)

    Google Scholar 

  24. ’t Hooft, G.: Determinism beneath quantum mechanics, arXiv: quant-ph/0212095

  25. ’t Hooft, G.: Int. J. Theor. Phys. 42, 355 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. ’t Hooft, G.: J. Phys.: Conf. Ser. 67, 012015 (2007), arXiv: quant-ph/0604008

    Article  ADS  Google Scholar 

  27. Elze, H.-T.: Phys. Lett. A 335, 258 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Elze, H.-T.: Braz. J. Phys. 35, 343 (2005)

    Google Scholar 

  29. Elze, H.-T.: A quantum field theory as emergent description of constrained supersymmetric classical dynamics. In: Proceedings 8th Int. Conf. “Path Integrals. From Quantum Information to Cosmology”, Prague, 6–10 June 2005, arXiv: hep-th/0508095

  30. Elze, H.-T.: J. Phys.: Conf. Ser. 33, 399 (2006)

    Article  Google Scholar 

  31. Blasone, M., Jizba, P., Vitiello, G.: Phys. Lett. A 287, 205 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Blasone, M., Celeghini, E., Jizba, P., Vitiello, G.: Phys. Lett. A 310, 393 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Elze, H.-T., Schipper, O.: Phys. Rev. D 66, 044020 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Elze, H.-T.: Phys. Lett. A 310, 110 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Blasone, M., Jizba, P., Kleinert, H.: Braz. J. Phys. 35, 497 (2005)

    Google Scholar 

  36. Blasone, M., Jizba, P., Kleinert, H.: Phys. Rev. A 71, 052507 (2005)

    Article  ADS  Google Scholar 

  37. Markopoulou, F., Smolin, L.: Phys. Rev. D 70, 124029 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  38. Adler, S.L.: Quantum Mechanics as an Emergent Phenomenon. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  39. Elze, H.-T.: Int. J. Theor. Phys. DOI 10.1007/s10773-006-93373 (2007), arXiv: hep-th/0510267

    MathSciNet  Google Scholar 

  40. Jackiw, R., Kerman, A.: Phys. Lett. A 71, 158 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  41. Elze, H.-T.: Nucl. Phys. B 436, 213 (1995)

    Article  ADS  Google Scholar 

  42. Elze, H.-T.: Phys. Lett. B 369, 295 (1996)

    Article  ADS  Google Scholar 

  43. Elze, H.-T.: arXiv: quant-ph/9710063

  44. Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  45. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw–Hill, New York (1985)

    Google Scholar 

  46. Diósi, L.: Phys. Lett. A 105, 199 (1984)

    Article  ADS  Google Scholar 

  47. Penrose, R.: Philos. Trans. R. Soc. 356, 1927 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  48. Diósi, L.: Braz. J. Phys. 35, 260 (2005)

    Article  ADS  Google Scholar 

  49. Salzman, P.J., Carlip, S.: A possible experimental test of quantized gravity, arXiv: gr-qc/0606120

  50. Diósi, L.: Notes on certain Newton gravity mechanisms of wave function localization and decoherence, arXiv: quant-ph/0607110

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Thomas Elze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elze, HT. A Relativistic Gauge Theory of Nonlinear Quantum Mechanics and Newtonian Gravity. Int J Theor Phys 47, 455–467 (2008). https://doi.org/10.1007/s10773-007-9471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-007-9471-6

Keywords

Navigation