Planck’s Constant in the Light of Quantum Logic


The goal of quantum logic is the “bottom-top” reconstruction of quantum mechanics. Starting from a weak quantum ontology, a long sequence of arguments leads to quantum logic, to an orthomodular lattice, and to the classical Hilbert spaces. However, this abstract theory does not yet contain Planck’s constant . We argue, that can be obtained, if the empty theory is applied to real entities and extended by concepts that are usually considered as classical notions. Introducing the concepts of localizability and homogeneity we define objects by symmetry groups and systems of imprimitivity. For elementary systems, the irreducible representations of the Galileo group are projective and determined only up to a parameter z, which is given by z=m/, where m is the mass of the particle and Planck’s constant. We show that has a meaning within quantum mechanics, irrespective of use the of classical concepts in our derivation.

This is a preview of subscription content, access via your institution.


  1. 1.

    Busch, P.: Indeterminacy relations and simultaneous measurements in quantum theory. Int. J. Theor. Phys. 24, 63–92 (1985)

    Article  MathSciNet  Google Scholar 

  2. 2.

    Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  3. 3.

    Dalla Chiara, M.L., Giuntini, R.: Quantum logics. arXiv:quant-ph/0101028 v2 (2001)

  4. 4.

    Dalla Chiara, M.L.: Unsharp quantum logics. Int. J. Theor. Phys. 34, 1331–1336 (1995)

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 1331–1352 (1994)

  6. 6.

    Heinonen, T.: Imprecise Measurements in Quantum Mechanics. Turun Yliopisto, Turku (2005)

    Google Scholar 

  7. 7.

    Jauch, J.M.: Foundations of Quantum Mechanics. Addison–Wesley, Reading (1968)

    MATH  Google Scholar 

  8. 8.

    MacLaren, M.D.: Nearly modular orthocomplemented lattices. Trans. Am. Math. Soc. 114, 401–416 (1965)

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    Mittelstaedt, P.: Constitution of objects in classical mechanics and in quantum mechanics. Int. J. Theor. Phys. 34, 1615–1626 (1995)

    Article  MathSciNet  Google Scholar 

  10. 10.

    Mittelstaedt, P.: Quantum physics and classical physics—in the light of quantum logic. Int. J. Theor. Phys. 44, 771–781 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    Piron, C.: Axiomatique quantique. Helv. Phys. Acta 37, 439–468 (1964)

    MATH  MathSciNet  Google Scholar 

  12. 12.

    Piron, C.: Foundations of Quantum Physics. Benjamin, Reading (1976)

    MATH  Google Scholar 

  13. 13.

    Solèr, M.P.: Characterisation of Hilbert spaces by orthomodular lattices. Commun. Algebra 23(1), 219–243 (1995)

    MATH  Article  Google Scholar 

  14. 14.

    Varadarajan, V.S.: Geometry of Quantum Theory, vol. 1. Van. Nostrand, Princeton (1968)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Peter Mittelstaedt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mittelstaedt, P. Planck’s Constant in the Light of Quantum Logic. Int J Theor Phys 47, 104–113 (2008).

Download citation


  • Planck’s constant
  • Quantum logic
  • Classical physics