Skip to main content
Log in

Quantal Noether Identities and Their Applications

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the phase-space generating functional of the Green function for a system with a regular/singular Lagrangian, the quantal canonical Noether identities (NI) under the local and non-local transformation in extended phase have been derived, respectively. The result holds true whether the Jacobian of the transformation is equal to unity or not. Based on the configuration-space generating functional of the gauge-invariant system obtained by using Faddeev-Popov (FP) trick, the quantal NI under the local and non-local transformation in configuration space have been also deduced. It is showed that for a system with a singular Lagriangian one must use the effective action in the quantal NI instead of the classical action in corresponding classical NI. It is pointed out that in certain cases, the quantal NI may be converted into the quantal (weak) conservation laws by using the quantal equations of motion. This algorithm to derive the quantal conservation laws differs from the quantal first Noether theorem. The preliminary applications of this formulation to Yang-Mills (YM) fields and non-Abelian Chern-Simons (CS) theories are given. The quantal conserved quantities for non-local transformation in YM fields are obtained. The conserved BRS and PBRS quantities at the quantum level in non-Abelian CS theories are also found. The property of fractional spin in CS theories is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antillon, A., Escallona, and German, G., et al. (1995). Phys. Lett. B 359, 327.

  • Banerjee, R. (1993). Phys. Rev. D 48, 2905.

    Google Scholar 

  • Banerjee, R. (1994). Nucl. Phys. B 419, 611.

    Google Scholar 

  • Banerjee, R. and Chakraborty, B. (1994). Phys. Rev. D 49, 5431.

    Google Scholar 

  • Banergee, R. and Chakraborty, B. (1996). Ann. Phys. 247, 188.

  • Batalin, I. A. and Vilkvisky, G. A. (1977), Phys. Lett. B 69, 309.

    Google Scholar 

  • Batalin, I. A. and Vilkovisky, G. A. (1983). Phys. Rev. D 28, 2567.

    Google Scholar 

  • Deser, S., Jackiw, and Templeton, S. (1982). Ann. Phys. 140, 372.

  • Faddeev, L. D. (1970). Theor. Math. Phys. 1, 1.

    Google Scholar 

  • Faddeev, L. D. and Popov, V. N. (1967). Phys. Lett. B 25, 29.

  • Foussats, A., Manavella, E., and Repetto, C., et al. (1995). Int. J. Theor. Phys. 34, 1037.

  • Foussats, A., Manavella, E., and Repetto, C., et al. (1996). J. Math. Phys. 37, 84.

  • Fujikawa, K. (1980). Phys. Rev. Lett. 44, 1733.

    Google Scholar 

  • Fujikawa, K. (1981). Phys. Rev. 23, 2262.

  • Fradkin, E. S. and Fradkin, T. E. (1978). Phys. Lett. B 72, 343.

    Google Scholar 

  • Fradkin, E. S. and Palchik, M. Y. (1984). Phys. Lett. B 147, 86.

    Google Scholar 

  • Fradkin, E. S. and Vilkovisky, G. A. (1975). Phys. Lett. B 55, 224.

    Google Scholar 

  • Gomis, J., Paris, J., and Sumuel, S. (1995). Phys. Rep. 259, 1.

  • Henneaux, M. (1985). Phys. Rep. 126, 1.

  • Lerda (1992). Anyons, Berlin: Springer-Verlag.

  • Li, Z.-P. (1987). Int. J. Theor. Phys. 26, 853.

    Google Scholar 

  • Li, Z.-P. (1991). J. Phys. A: Math. Gen. 24, 4261.

    Google Scholar 

  • Li, Z.-P. (1993a). Classical and Quantal Dynamics of Constrained Systems and Their Symmetry Properties, Beijing Polytechnic University Press, Beijing.

  • Li, Z.-P. (1993b). Sci. China A 36, 1212.

    Google Scholar 

  • Li, Z.-P. (1993c). Int. J. Theor. Phys. 32, 201.

    Google Scholar 

  • Li, Z.-P. (1994a). Phys. Rev. E 50, 876.

    Google Scholar 

  • Li, Z.-P. (1994b). Int. J. Theor. Phys. 33, 1027.

    Google Scholar 

  • Li, Z.-P. (1994c). Acta Phys. Sin. (Overseas Ed.) 3, 481.

    Google Scholar 

  • Li, Z.-P. (1995a). Int. J. Theor. Phys. 34, 1945.

  • Li, Z.-P. (1995b). J. Phys. A: Math. Gen. 28, 5931.

    Google Scholar 

  • Li, Z.-P. (1995c). Int. J. Theor. Phys. 34, 523.

    Google Scholar 

  • Li, Z.-P. (1996). Sci. China 39, 738.

  • Li, Z.-P. (1997). Z. Phys. C 76, 181.

  • Li, Z.-P. (1999). Chin. Sci. Bull. 44, 207.

    Google Scholar 

  • Li, Z.-P. and Gao, H. X. (1999). Int. J. Theor. Phys. 36, 1071.

    Google Scholar 

  • Li, Z.-P. and Long. Z.-W. (1999). J. Phys. A: Math. Gen. 32, 6391.

    Google Scholar 

  • Mizrahi, M. M. (1978) J. Math. Phys. 19, 298.

    Google Scholar 

  • Kim, J. K., Kim, W. T., and Shin, H. (1994). J. Phys. A: Math. Gen. 27, 6067.

    Google Scholar 

  • Kuang, Y. P. and Yi, Y. P. (1980). Phys. Energiae Fortieset Phys. Nuclearis 4, 286.

    Google Scholar 

  • Rabello, S. J. and Gaete, P. (1995). Phys. Lett. D 52, 7205.

  • Senjanovic, P. (1976). Ann. Phys. (NY) 100, 227.

    Google Scholar 

  • Sundermeyer, K. (1982). Lecture Note in Physics, Springer, Berlin, 169.

  • Young, B. L. (1987). Introduction to Quantum Field Theories, Science Press, Beijing.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-ping Li.

Additional information

PACS no11.10. Ef; 11.30.−j 11.15. −q.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Rj., Li, Zp. Quantal Noether Identities and Their Applications. Int J Theor Phys 45, 2407–2427 (2006). https://doi.org/10.1007/s10773-006-9210-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9210-4

Keywords

Navigation