Skip to main content
Log in

BRST Invariant Theory of a Generalized 1 + 1 Dimensional Nonlinear Sigma Model with Topological Term

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We give a generalized Lagrangian density of 1 + 1 Dimensional O(3) nonlinear σ model with subsidiary constraints, different Lagrange multiplier fields and topological term, find a lost intrinsic constraint condition, convert the subsidiary constraints into inner constraints in the nonlinear σ model, give the example of not introducing the lost constraint \(\dot N\) = 0, by comparing the example with the case of introducing the lost constraint, we obtain that when not introducing the lost constraint, one has to obtain a lot of various non-intrinsic constraints. We further deduce the gauge generator, give general BRST transformation of the model under the general conditions. It is discovered that there exists a gauge parameter β originating from the freedom degree of BRST transformation in a general O(3) nonlinear sigma model, and we gain the general commutation relations of ghost field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Coleman, S., Weiss, J., and Zumino, B. (1961). Physical Revew 177, 2239; Callan, C., Coleman, S., Weiss, J., and Zumino, B. (1969). Physical Revew 177, 2247.

  • Vainshtein, A. I., Zakharov, V. I., Novikov, V. A., and Shifman, M. A. (1986). Sov. J. Pant, Nucl., 17, 204; Zamolodchikov, A. B. (1979). Annals Physics (NY), 120, 253.

  • Li, M. and Wu, Y. S. (2000). Physical Review Letters, 84, 2084.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Polyakov, A. M. (1975). Physics Letters B 59, 79; Novikv, V. A., et al. (1984). Physical Repots 116, 103.

  • Wilczek, F., and Zee, A. (1983). Physical Review Letters 51, 2250; Bowick, M. J., Karabali, D., Wijewardhana, L. C. R. (1986). Nuclear Physics B 271, 417; and references therein.

  • Wu, Y. S., Zee, A. (1984). Physical Letteers 147B, 325; Panigrahi, P., Roy, S., and Scherer, W. (1988). Physical Review D 38, 3199; Physical Review Letteres 61, 2827.

    Google Scholar 

  • Polyakov, A. M. (1988). Modern Physics Letters A3, 455; Dzyaloshinskii, I., Polyakov, A. M., and Wiegmann, P. (1988). Physics Letters A 127, 112.

  • Wiegmann, P. B. (1988). Physical Review Letters 60, 821.

    Article  ADS  Google Scholar 

  • Itoh, T., Oh, P., and Ryou, C. (2001). Physical Review D 64, 045005/1-5.

  • Yurkevich, I. V. and Lerner, I. V. (2001). Physical Review B 64, 054515/1-5.

    Google Scholar 

  • Kamenev, A. (2000). Physical Review Letters 85(19), 4160.

    Article  ADS  Google Scholar 

  • Becchi, C., Rouet, A., and Stora, R. (1975/1976). Communication in Mathematical Physics 42, 127; Annual Physics 98, 287.

    Google Scholar 

  • t’Hooft, G. (1971). Nuclear Physics B 33, 173; Nuclear Physics B 35, 167; t’Hooft, G. and Veltman, M. (1972). Nuclear Physics B 44, 189; Lee, B. W. and Zinn-Justin, J. (1972/1973). Physical Review D 5, 3121; D 7, 1049; Lee, B.W. (1974). Physical Review D 9, 938.

  • Kugo, T. and Ojima, I. (1979). Progress of Theoretical Physics Suppliment 66, 1.

    MathSciNet  ADS  Google Scholar 

  • Fradkin, E. S. and Vilkovisky, G. A. (1975). Physics Letters B 55, 224; Batalin, I. A. and Vilkovisky, G. A. (1977). Physics Letters B 69, 309.

    Google Scholar 

  • Kato, M. and Ogawa, K. (1983). Nuclear Physics B 212, 443; Hwang, S. (1983). Physical Review D 28, 2614; Siegel, W. (1984). Physics Letters B 149, 157, 162.

  • Dirac, P. A. M. (1964). Lectures in Quantum Mechanics, Yeshiva University, New York.

  • Banerjee, R. (1993). Physical Review D 48, R5467; Kim, W. T. and Park, Y.-J. (1994). Physics Letters B 336, 376; Henneaux, M. and Wilch, A. (1998) Physical Review D 58, 025017.

  • Kim, Y.-W., Park, Y.-J., and Rothe, K. D. (1998). Journal of Physics G 24, 953; Kim, Y.-W. and Rothe, K. D. (1998). Nuclear Physics B 510, 511; Ghosh, S. (1994). Physical Review D 49, 2990; Amorim, R. and Barcelos-Neto, J. (1996). Physical Review D 53, 7129; Nativiade, C. P. and Boschi-Filho, H. (2000). Physical Review D 62, 025016.

  • Banerjee, N., Ghosh, S., and Banerjee, R. (1994). Physical Review D 49, 1996.

    Article  MathSciNet  ADS  Google Scholar 

  • Banerjee, R. (1994). Physical Review D 49, 2133.

    Article  MathSciNet  ADS  Google Scholar 

  • Henneaux, M. and Teitelboim, C. (1992). Quantization of Gauge Systems, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  • Gitman, D. M. and Tyutin, I. V. (1990). Quantization of Fields with Constraints, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Voruganti, P. (1989). Physical Review D 39, 1179.

    Article  MathSciNet  ADS  Google Scholar 

  • Itzykson, C., Zuber, J.-B. (1980). Quantum Field Theory, Mcgraw-Hill International Book Company, New York.

    Google Scholar 

  • Huang, Y. C., Ma, F. C., and Zhang, N. (2004). Modern Physics Letterrs B 18, 1367.

    Article  MathSciNet  ADS  Google Scholar 

  • Huang, Y. C. and Weng, G. (2005). Communication in Theoretical Physics 44, 757.

    Article  Google Scholar 

  • Huang, Y. C., Lee, X. G., and Shao, M. X. (2006). Modern Physics Letters A 21, 1107.

    Article  ADS  MATH  Google Scholar 

  • Huang, Y. C. and Lin, B. L. (2002). Physics Letters A 299, 6449.

    MathSciNet  Google Scholar 

  • Friedan, D. (1980). Physical Review Letters 45, 1057.

    Article  MathSciNet  ADS  Google Scholar 

  • Friedan, D. H. (1985). Annual Physics 163, 318.

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Chang Huang.

Additional information

PACS numbers: 11.10.Lm; 11.30.Ly

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YC., Yang, KH. & Lee, XG. BRST Invariant Theory of a Generalized 1 + 1 Dimensional Nonlinear Sigma Model with Topological Term. Int J Theor Phys 45, 2396–2406 (2006). https://doi.org/10.1007/s10773-006-9209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9209-x

Keywords

Navigation