Skip to main content
Log in

Relational Interpretation of the Wave Function and a Possible Way Around Bell’s Theorem

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The famous “spooky action at a distance” in the EPR-scenario is shown to be a local interaction, once entanglement is interpreted as a kind of “nearest neighbor” relation among quantum systems. Furthermore, the wave function itself is interpreted as encoding the “nearest neighbor” relations between a quantum system and spatial points. This interpretation becomes natural, if we view space and distance in terms of relations among spatial points. Therefore, “position” becomes a purely relational concept. This relational picture leads to a new perspective onto the quantum mechanical formalism, where many of the “weird” aspects, like the particle-wave duality, the non-locality of entanglement, or the “mystery” of the double-slit experiment, disappear. Furthermore, this picture circumvents the restrictions set by Bell’s inequalities, i.e., a possible (realistic) hidden variable theory based on these concepts can be local and at the same time reproduce the results of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbour, J. B. and Bertotti, B. (1977). Nuovo Cimento B 38, 1.

    Article  ADS  Google Scholar 

  • Barbour, J. B. and Bertotti, B. (1982). Proceedings of the Royal Society of London A 382, 295.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Born, M. (ed.) (1971). The Born-Einstein Letters Macmillan, London.

    Google Scholar 

  • Bruβ, D. (2001). Proceedings of the ICQI Rochester Conference, lanl e-print quant-ph/0110078.

  • Clarke, S. (1716). A collection of papers which passed between the late learned Mr. Leibniz and Dr. Clarke in the years 1715–1716 relating to the principles of natural philosophy and religion.

  • Coecke, B. (2000). The Logic of Entanglement. An Invitation. Research Report PRG-RR-01-12 Oxford University Computing Laboratory (available at web.comlab.ox.ac.uk/oucl/publications/tr/rr-03-12.html

  • Descartes, R. (1644). Principia Philosophiae, Apud Ludovicum Elzevirium, Amsterdam.

    Google Scholar 

  • deWitt, B. S. (1970). Quantum Mechanics and Reality Physics Today; Sept., 30–35.

  • Everett, H. (1957). “Relative state” formulation of quantum mechanics. Reviews of Modern Physics 29, 454.

    Article  ADS  MathSciNet  Google Scholar 

  • Feynman, R. P., Leighton, R. B., and Sands, M. (1965). The Feynman Lectures on Physics Addison Wesley, Reading, MA, Vol. III, Chapter 1.

    MATH  Google Scholar 

  • Haag, R. (1990). Communication in Mathematical Physics 132, 245.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Haag, R. (2004). Mind and Matter 2/2, 53.

    Google Scholar 

  • Hasegawa, Y., Loidl, R., Badurek, G., Baron, M., and Rauch, H. (2003). Violation of a Bell-like inequality in single-neutron interferometry. Nature 425, 45.

    Article  ADS  Google Scholar 

  • Hill, S. and Wootters, W. K. (1997). Physics Review Letters 78, 5022.

    Article  ADS  Google Scholar 

  • Horodecki, M., Horodecki, P., and Horodecki, R. (1996). Physics Letters A 223,1.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Leibniz, G. W. (1954). Principes de la Philosophie ou Monadologie Presse Universitaires de France, Paris.

    Google Scholar 

  • Mach, E. (1883). Die Mechanik in ihrer Entwicklung historisch-kritisch dargestellt (English The Science of Mechanics), F. A. Brockhaus, Leipzig.

    Google Scholar 

  • Penrose, R. (1972). In Magig without Magic, J. R. Klauder, ed. Freeman, San Francisco.

    Google Scholar 

  • Plesch, M. and Bužek, V. (2003). Physics Review A 67, 012322.

    Article  ADS  Google Scholar 

  • Requardt, M. (2000). Classical and Quantum Gravity 17, 2029.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Rovelli, C. and Smolin, L. (1990). Loop space representation of quantum general relativity. Nuclear Physics B331 (1990) 80.

    ADS  MathSciNet  Google Scholar 

  • Rovelli, C. (2004). Quantum Gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  • Sorkin, R. D. (1991). International Journal of Theoretical Physics 30, 323.

    Article  MathSciNet  Google Scholar 

  • Weinberg, S. (2000). The Quantum Theory of Fields Cambridge University Press.

  • Wootters, W. K. (1998). Physics Review Letters 80, 2245.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS: 03.65.Ud, 04.60.Nc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filk, T. Relational Interpretation of the Wave Function and a Possible Way Around Bell’s Theorem. Int J Theor Phys 45, 1166–1180 (2006). https://doi.org/10.1007/s10773-006-9125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9125-0

Key Words

Navigation