Reconstruction of Five-Dimensional Bounce Cosmological Models from Deceleration Factor


In this paper, we consider a class of five-dimensional Ricci-flat vacuum solutions, which contain two arbitrary functions μ(t) and ν(t). It is shown that μ(t) can be rewritten as a new arbitrary function f(z) in terms of redshift z and the f(z) can be determined by choosing particular deceleration parameters q(z) which gives early deceleration and late time acceleration. In this way, the 5D cosmological model can be reconstructed and the evolution of the universe can be determined.

This is a preview of subscription content, log in to check access.


  1. Anderson, E. (2004). The Campbell–Magaard Theorem is inadequate and inappropriate as a protective theorem for relativistic field equations, gr-qc/0409122.

  2. Armendáriz-Picón, Damour, T., and Mukhanov, V. (1999). k-Inflation. Physics Letters B 458, 209.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Banerjee, N. and Das, S. (2005). Acceleration of the universe with a simple trigonometric potential, astro-ph/0505121.

  4. Barris, B. J., et al. (2004). 23 High Redshift Supernovae from the If A Deep Survey: Doubling the SN Sample at z > 0.7. Astrophysical Journal 602, 571, astro-ph/0310843.

  5. Caldwell, R. R., Kamionkowski, M., and Weinberg, N. N. (2003). Phantom Energy: Dark Energy with w > −1 Causes a Cosmic Doomsday. Physical Review Letter 91, 071301, astro-ph/0302506.

  6. Caldwell, R. R. (2002). A Phantom Menace? Cosmological consequences of a dark energy component with super-negative equation of state. Physical Letters B 545, 23, astro-ph/9908168.

  7. Chiba, T. (2002). Tracking k-essence. Physical Review D 66, 063514, astro-ph/0206298.

  8. Cooray, A. R. and Huterer, D. (1999). Astrophysics Journal 513, L95.

    Article  ADS  Google Scholar 

  9. Dahia, F. and Romero, C. (2005). Dynamically generated embeddings of spacetime, gr-qc0503103.

  10. de Bernardis, P., et al. (2002). A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation. Nature 404, 955, astro-ph/0004404.

  11. Gerke, B. F. and Efstathiou, G. (2002). Monthly Notices Royal Astronomical Society 335, 33.

    Article  ADS  Google Scholar 

  12. Guo, Z. K., Ohtab, N., and Zhang, Y. Z. (2005). Parametrization of Quintessence and Its Potential, astro-ph/0505253.

  13. Hanany, S., et al. (2000). MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on angular scales of 10 arcminutes to 5 degrees. Astrophysical Journal 545, L5, astro-ph/0005123.

  14. Hannestad, S. and Mortsell, E. (2002). Physical Review D66, 063508.

    ADS  Google Scholar 

  15. Hao, J. G. and Li, X. Z. (2003). Attractor Solution of Phantom Field. Physical Review D 67, 107303, gr-qc/0302100.

  16. Kaluza, T. (1921). On The Problem Of Unity In Physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Mathematical Physics) K1966.

  17. Klein, O. (1926). Quantum Theory And Five-Dimensional Relativity. Zeitrchrist fur Physic 37, 895 [Surveys High Energering Physics 5 241 (1926)].

  18. Knop, R. A., et al. (2003). New Constraints on Ω M , ΩΛ, and w from an Independent Set of Eleven High-Redshift Supernovae Observed with HST, astro-ph/0309368.

  19. Liko, T. and Wesson, P. S. (2003). gr-qc/0310067.

  20. Linder, E. V. (2003). Physical Review Letter 90, 091301.

    Article  ADS  Google Scholar 

  21. Liu, H. Y. (2003). Exact global solutions of brane universe and big bounce. Physical Letter B 560, 149, hep-th/0206198.

  22. Liu, H. Y. and Mashhoon, B. (1995). A machian interpretation of the cosmological constant. Annales Physics 4, 565.

    Article  ADS  MATH  Google Scholar 

  23. Liu, H. Y. and Wesson, P. S. (2001). Universe models with a variable cosmological “constant” and a “big bounce”. Astrophysical Journal 562, 1, gr-qc/0107093.

    Google Scholar 

  24. Maartens, R. (2004). Brane-world gravity. Living Rev. Rel 7, 7, gr-qc/0312059.

  25. Malquarti, M., Copeland, E. J., Liddle, A. R., and Trodden, M. (2003). A new view of k-essence. Physical Review D 67, 123503.

    Article  ADS  MathSciNet  Google Scholar 

  26. Padmanabhan, T. and Choudhury, T. R. (2003). Monthly Notices Royal Astronomical Society 344, 823.

    Article  ADS  Google Scholar 

  27. Perlmutter, S., et al. (1999). Measurements of omega and lambda from 42 high-redshift supernovae. Astrophysical Journal 517, 565, astro-ph/9812133.

  28. Ponce de Leon, J. (1988). General Relativity Gravity 20, 539.

    Article  ADS  MathSciNet  Google Scholar 

  29. Ponce de Leon, J. (1988). General Relativity Gravity 20 539.

    Article  ADS  MathSciNet  Google Scholar 

  30. Ponce de Leon, J. (2001). Modern Physics Letter A 16, 2291–2304, gr-qc/0111011.

    Google Scholar 

  31. Riess, A. G., et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal 116, 1009, astro-ph/9805201.

  32. Riess, A. G., et al. (2004). Type Ia Supernova Discoveries at z > 1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, astro-ph/0402512.

  33. Sahni, V. (2002). The cosmological constant problem and quintessence. Classical Quantum Gravity 19, 3435, astro-ph/0202076.

  34. Sahni, V. (2003). Theoretical models of dark energy. Chaos Solitan and Fractals 16 527.

    Article  MATH  Google Scholar 

  35. Seahra, S. S. and Wesson, P. S. (2003). Application of the Campbell-Magaard theorem to higher-dimensional physics. Classical and Quantum Gravity 20, 1321, gr-qc/0302015.

  36. Seahra, S. S. and Wesson, P. S. (2003). Universes encircling five-dimensional black holes. Journal of Mathematical Physics 44, 5664.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Singh, P., Sami, M., and Dadhich, N. (2003). Cosmological dynamics of a phantom field. Physical Review D 68, 023522, hep-th/0305110.

  38. Spergel, D. N., et al. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophysical Journal Supplement 148, 175, astro-ph/0302209.

  39. Steinhardt, P. J., Wang, L., and Zlatev, I. (1999). Cosmological Tracking Solutions. Physical Review D 59, 123504, astro-ph/9812313.

  40. Tonry, J. L., et al. (2003). Cosmological Results from High-z Supernovae. Astrophysical Journal 594, 1, astro-ph/0305008.

  41. Turner, M. S. (2002). Making Sense of the New Cosmology. International Journal Modern Physics A 17S1, 180, astro-ph/0202008

  42. Wang, B. L., Liu, H. Y., and Xu, L. X. (2004). Accelerating Universe in a Big Bounce Model. Modern Physics Letter A 19, 449, gr-qc/0304093.

    Google Scholar 

  43. Wesson, P. S. (1999). Space-Time-Matter (Singapore: World Scientific).

  44. Xu, L. X. and Liu, H. Y. (2006). The Correspondence Between a Five-dimensional Bounce cosmological Model and Quintessence Dark Energy Models. Modern Physics Letter A 21, 3105, astro-ph/0507397.

    Google Scholar 

  45. Xu, L. X. and Liu, H. Y. (2005) Three Components Evolution in a Simple Big Bounce Cosmological Model, International Journal Modern Physics D 14, 883, astro-ph/0412241.

  46. Xu, L. X., Liu, H. Y., and Wang, B. L. (2003). Big Bounce singularity of a simple five-dimensional cosmological model. Chinease Physical Letter 20, 995, gr-qc/0304049.

    Google Scholar 

  47. Zlatev, I., Wang, L., and Steinhardt, P. J. (1999). Quintessence, Cosmic Coincidence, and the Cosmological Constant. Physical Review Letter 82, 896, astro-ph/9807002.

Download references

Author information



Corresponding author

Correspondence to Hongya Liu.

Additional information

PACS: 04.50.+h, 98.80.-k

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, L., Liu, H. & Ping, Y. Reconstruction of Five-Dimensional Bounce Cosmological Models from Deceleration Factor. Int J Theor Phys 45, 843–850 (2006).

Download citation


  • Kaluza–Klein theory
  • cosmology