Skip to main content
Log in

Toy Model for a Relational Formulation of Quantum Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the absence of an external frame of reference—i.e., in background independent theories such as general relativity—physical degrees of freedom must describe relations between systems. Using a simple model, we investigate how such a relational quantum theory naturally arises by promoting reference systems to the status of dynamical entities. Our goal is twofold. First, we demonstrate using elementary quantum theory how any quantum mechanical experiment admits a purely relational description at a fundamental. Second, we describe how the original “non-relational” theory approximately emerges from the fully relational theory when reference systems become semi-classical. Our technique is motivated by a Bayesian approach to quantum mechanics, and relies on the noiseless subsystem method of quantum information science used to protect quantum states against undesired noise. The relational theory naturally predicts a fundamental decoherence mechanism, so an arrow of time emerges from a time-symmetric theory. Moreover, our model circumvents the problem of the “collapse of the wave packet” as the probability interpretation is only ever applied to diagonal density operators. Finally, the physical states of the relational theory can be described in terms of “spin networks” introduced by Penrose as a combinatorial description of geometry, and widely studied in the loop formulation of quantum gravity. Thus, our simple bottom-up approach (starting from the semiclassical limit to derive the fully relational quantum theory) may offer interesting insights on the low energy limit of quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharonov, Y. and Kaufherr, T. (1984). Quantum frames of reference. Physical Review D 30, 368.

    Article  ADS  MathSciNet  Google Scholar 

  • Aharonov, Y. and Susskind, L. (1967). Charge superselecion rule. Physical Review 155(5), 1428.

    Article  ADS  Google Scholar 

  • Baez, J. (1995). Baiz, J. (1995). Spin networks in nonperturbative quantum gravity. In L. H. Kauffman, (ed.) The Interface of Knots and Physics, American Mathematical Society, Hattiesburg Mississippi. p. 167.

  • Baez, J. C. (1996). Spin network states in gauge theory. Advances in Mathematics 117, 253.

    Article  MathSciNet  MATH  Google Scholar 

  • Baez, J. C. (2000). An introduction to spin foam models of quantum gravity and BF theory. Lecture Notes in Physics 543, 25.

  • Bartlett, S. D., Rudolph, T., and Spekkens, R. W. (2004). Decoherence-full subspaces and the cryptographic power of a private shared reference frame. Physical Review A 70, 32307.

    Article  ADS  Google Scholar 

  • Bartlett, S. D., Rudolph, T., and Spekkens, R. W. (2005). Dialogue concerning two views on quantum coherences: factist and fictionist. quant-ph/0507214.

  • Busch, P. and Singh, J. (1998). Luders theorem for unsharp quantum effects. Physics Letters A 249, 10–24.

    Article  ADS  Google Scholar 

  • Caves, C. M., Fuchs, C. A., and Schack, R. (2002). Quantum probabilities as bayesian probabilities. Physsical Review A 65, 022305.

    Article  ADS  MathSciNet  Google Scholar 

  • DeWitt, B. S. (1967). Quantum theory of gravity I: the canonical theory. Physical Review 160, 1113.

    Article  ADS  MATH  Google Scholar 

  • Freidel, L. and Livine, E. R. (2003). Spin networks for noncompact groups. Journal of Mathematical Physics 44, 1322.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fuchs, C. A. (2002). Quantum foundations in the light of quantum information. In A. Gonis, (ed.) 2001 NATO Advanced Research Workshop “Decoherence and its implications in quantum computation and information transfer,” Mikonos, Greece.

  • Girelli, F. and Livine, E. R. (2005). Reconstructing quantum geometry from quantum information: spin networks as harmonic oscillators. Classical and Quantum Gravity 22, 3295.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Giovannetti, V., Lloyd, S., and Maccone, L. (2004). Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330.

    Article  ADS  Google Scholar 

  • Gambini, R. and Porto, R. A. (2001). Relational time in generally covariant quantum systems: four models. Physical Review D 63, 105014.

    Article  ADS  MathSciNet  Google Scholar 

  • Gambini, R., Porto, R., and Pullin, J. (2004). A relational solution to the problem of time in quantum mechanics and quantum gravity induces a fundamental mechanism for decoherence. New Journal of Physies 6, 45.

    Article  ADS  Google Scholar 

  • Gambini, R., Porto, R., and Pullin, J. (2005). Fundamental decoherence in quantum gravity. Brazilian Journal of Physics 35, 266.

    Article  ADS  Google Scholar 

  • Goldstone, J., Salam, A., and Weinberg, S. (1962). Broken symmetries. Physical Review 127, 965.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Haag, R. (1992). Local Quantum Physics: Fields, Particles, Algebras. Springer.

  • Hartle, J. B., Laflamme, R., and Marolf, D. (1995). Conservation laws in the quantum mechanics of closed systems. Physical Review D 51, 7007.

    Article  ADS  MathSciNet  Google Scholar 

  • Kempe, J., Bacon, D., Lidar, D. A., and Whaley, K. B. (2001). Theory of decoherence-free fault-tolerant universal quantum compuation. Physical Review A 63, 42307.

    Article  ADS  Google Scholar 

  • Kershaw, D., and Woo, C. H. (1974). Experimental test for the charge superselection rule. Physical Review Letters 33(15).

  • Kribs, D., Laflamme, R., and Poulin, D. (2005). A unified and generalized approach to quantum error correction. Physical Review Letters 94, 180501.

    Article  ADS  Google Scholar 

  • Knill, E., Laflamme, R., and Viola, L. (2002). Theory of quantum error correction for general noise. Physical Review Letters 84, 2525–2528.

    Article  ADS  MathSciNet  Google Scholar 

  • Kraus, K. (1983). States, Effects and Operations. Fundamental Notions of Quantum Theory, Academic Press, Berlin.

    MATH  Google Scholar 

  • Kogut, J. B., and Susskind, L. (1975). Kogut, J. B. and Susskind, L. (1975). Hamiltonian formulation of Wilson’s lattice gauge theories. Physical Review D 11, 395.

    Article  ADS  Google Scholar 

  • Leggett, A. J. (2000). Topics in the theory of the ultracold dilute alkali gases. In C. M. Savage and M. -P. Das, (eds.), Bose-Einstein Condensation. p.1.

  • Lindblad, G. (1999). A general no-cloning theorem. Letter in Mathematical Physics 47, 189–196.

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd, S. (2005). The computational universe: quantum gravity from quantum computation.

  • Major, S. (1999). A spin network primer. American Journal of Physics 67, 972.

    Article  ADS  MathSciNet  Google Scholar 

  • Marolf, D. (2000). Group averaging and refined algebraic quantization: Where are we now?

  • Mazzucchi, S. (2000). On the observables describing a quantum reference frame. arxiv.org:quant-ph/0006060

  • Milburn, G. J. (2003). Lorentz invariant intrinsic decoherence.

  • Milburn, G. J. and Poulin, D. (2005). Relational time for systems of oscillators. International Journal of Quantum Info.

  • Mølmer, K. (1997). Optical coherence: a convenient fiction. Physical Review A 55, 3195.

    Article  ADS  Google Scholar 

  • Nielsen, M. A., and Poulin, D. (2005). Algebraic and information-theoretic conditions for operator quantum error-correction.

  • Ollivier, H., Poulin, D., and Zurek, W. H. (2004). Objective properties from subjective quantum states: environment as a witness. Physical Review Letters 93, 220401.

    Article  ADS  Google Scholar 

  • Pegg, D. T. (1991). Time in a quantum mechanical world. Journal of Physics 24, 3031.

    Google Scholar 

  • Penrose, R. (1971). Angular momentum: an approach to combinatorial space-time. In T. Bastin, editor. Quantum Theory and Beyond, Cambridge University Press, Cambridge, UK. p. 151.

  • Poulin, D. (2004). Emergence of a classical world from within quantum theory. PhD thesis, University of Waterloo, Providence, RI (Rhode Island), USA.

  • Page, D. N. and Wootters, W. K. (1983). Evolution without evolution: dynamics described by stationary observables. Physical Review D 27, 2885.

    Article  ADS  Google Scholar 

  • Rovelli, C. (1991). Quantum reference systems. Classical and Quantum Gravity 8, 317.

    Article  ADS  MathSciNet  Google Scholar 

  • Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics 35, 1637.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rovelli, C. (2004). Quantum Gravity, Cambridge University Press, Cambridge, UK.

  • Rovelli, C. and Smolin, L. (1995). Spin networks and quantum gravity. Physical Review D 52, 5743.

    Article  ADS  MathSciNet  Google Scholar 

  • Sakurai, J. (1994). Modern quantum mechanics, Addison-Welay,Ontario, Canada.

    Google Scholar 

  • Toller, M. (1997). Quantum reference frames and quantum transformations. Il Nuovo Cimento 112, 1013.

    MathSciNet  Google Scholar 

  • Unruh, W. G. and Wald, R. M. (1989). Time and the interpretation of canon ical quantum gravity. Physical Review D 40, 2598.

    Article  ADS  MathSciNet  Google Scholar 

  • von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics, Princeton University Press, New Jersey.

    MATH  Google Scholar 

  • Wheeler, J. A. (1991). Information, physics, quantum: The search for links. In W. H. Zurek, (ed.) Complexity, Entropy and the Physics of Information, Addison-Wesley, Ontario, Canada.

  • Wigner, E. P. (1957). Relativistic invariance and quantum phenomena. Reviews of Modern Physics 29, 255.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zanardi, P. (2001). Stabilizing quantum information. Physical Review A 63, 12301.

    Article  ADS  MathSciNet  Google Scholar 

  • Zurek, W. H. (2003). Decoherence, einselection and the quantum origins of the classical. Reviews of Modern Physics 75, 715–775.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Poulin.

Additional information

PACS numbers: 03.67.-a, 04.60.Pp, 03.65.Yz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulin, D. Toy Model for a Relational Formulation of Quantum Theory. Int J Theor Phys 45, 1189–1215 (2006). https://doi.org/10.1007/s10773-006-9052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9052-0

Keywords

Navigation