Skip to main content
Log in

Comoving Self-Gravitating Scalar Field in the Newman Penrose Formalism

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

The Einstein field equation, coupled to the scalar field, is studied in a spherically symmetric comoving system. The problem is translated into the language of the Newman Penrose formalism that is based on the choice of a null tetrad frame. The corresponding (tabulated) Einstein field equation, Bianchi identities and scalar field equation are explicited in terms of the Weyl and Ricci scalars and discussed. Spherical symmetry reduces the difficulties but not so far to enable to integrate the scheme in general. The main result is that static self-gravitation is possible only for massless scalar field. The static solution is determined. It depends on an arbitrary function that can be interpreted as radial coordinate. The part of the space–time solution of the problem does not contain black holes. It is remarked that in the part of the space–time not solution of the problem, light rays cannot propagate radially but admit circular orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, M. A. and Evans, C. R. (1993). Critical behavior and scaling in vacuum axisymmetric gravitational collapse. Physical Review Letters 70, 2980.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. (1983). The Mathematical Theory of Black Holes, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Choptuik, M. W. (1993). Universality and scaling in gravitational collapse of a massless scalar field. Physical Review Letters 70, 9.

    Article  ADS  Google Scholar 

  • Choptuik, M. W., Hirshman, E. W., Lieblig, S. L., and Pretoriou, F. (2003). Critical collapse of the massless scalar field in axisymmetry. Physical Review D68, 044007.

    ADS  Google Scholar 

  • Christodoulou, D. (1986). The problem of self-gravitating scalar field. Communications in Mathematical Physics 105, 337.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Christodoulou, D. (1987). A mathematical theory of gravitational collapse. Communications in Mathematical Physics 106, 613.

    Article  ADS  MathSciNet  Google Scholar 

  • Evans, C. R. and Coleman, J. S. (1994). Critical phenomena and self-similarity in the gravitational collapse of radiation fluid. 72, 1782.

    Google Scholar 

  • Hirshman, E. W. and Eardley, D. M. (1995a). Universal scaling and echoing in the gravitational collapse of a complex scalar field. Physical Review D51, 4198.

    ADS  Google Scholar 

  • Hirshman, E. W. and Eardley, D. M. (1995b). Critical exponents and stability at the black hole threshold for a complex scalar field. Physical Review D52, 5850.

    ADS  Google Scholar 

  • Krasinski, A. (1997) Inhomogeneous Cosmological Models, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Newman, E. and Penrose, R. (1962). An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics 3, 566.

    Article  ADS  MathSciNet  Google Scholar 

  • Penrose, R. (1968). Structure of space–time. In: de Witt, M. and Wheeler, J. A. (Eds.), Battelle Rencontres: 1967 Lectures in Mathematical Physics, Benjamin, New York.

  • Penrose, R. and Rindler, W. (1984). Spinors and Space–Time, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Sachs, R. (1961). Gravitationa waves in general relativity. VI. The outgoing radiation condition. Proceedings of the Royal Society of London, Series A, 264, 309.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Whang, A. (2003). Critical collapse of a cylindrically symmetric scalar field in four-dimensional Einstein's theory of gravity. Physical Review D68, 064006.

    ADS  Google Scholar 

  • Weinberg, S. (1972). Gravitation and Cosmology, Wiley, New York.

    Google Scholar 

  • Zecca, A. (1993). Some remarks on Dirac's equation in the Tolman-Bondi geometry. International Journal of Theoretical Physisc 32, 615.

    Article  ADS  MathSciNet  Google Scholar 

  • Zecca, A. (2000). Weyl spinor and solutions of massless free field equation. International Journal of Theoretical Physisc 39, 377.

    Article  MATH  MathSciNet  Google Scholar 

  • Zecca, A. (2001). Static solutions of gravitating scalar and matter field in spherically symmetric comoving systems. Il Nuovo Cimento B116, 169.

    ADS  Google Scholar 

  • Zecca, A. (2003). Self gravitating scalar field in spherically symmetric comoving system: Solutions depending on one variable. Il Nuovo Cimento B118, 953.

    ADS  MathSciNet  Google Scholar 

  • Zecca, A. (2004). Static massless and time dependent massive self gravitating scalar field in spherically symmetric comoving system. Il Nuovo Cimento B119, 521.

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Zecca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecca, A. Comoving Self-Gravitating Scalar Field in the Newman Penrose Formalism. Int J Theor Phys 45, 375–383 (2006). https://doi.org/10.1007/s10773-006-9028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9028-0

Key Words:

Navigation