Skip to main content
Log in

Gauge Coupling Constants as Residues of Spacetime Representations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The gauge coupling constants in the electroweak standard model can be written as mass ratios, e.g. the coupling constant for isospin interactions \(g^2_2=2\frac{m^2_{\rm W}}{m^2}\sim 2(\frac{80}{169})^2\sim\frac{1}{2.3}\) with the mass of the charged weak boson and the mass parameter characterizing the ground state degeneracy. A theory is given which relates the two masses in such a ratio to invariants which characterize the representations of a noncompact nonabelian group with real rank 2. The two noncompact abelian subgroups are operations for time and for a hyperbolic position space in a model for spacetime, homogeneous under dilation and Lorentz group action. The representations of the spacetime model embed the bound state representations of hyperbolic position space as seen in the nonrelativistic hydrogen atom. Interactions like Coulomb or Yukawa interactions are described by Lie algebra representation coefficients. A quantitative determination of the ratio of the invariants for position- and time-related operations, determined by the spacetime representation, gives the right order of magnitude for the gauge coupling constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bargmann, V. (1947). Irreducible representations of the Lorentz group. Annals of Mathematics 48, 568–640.

    Article  MathSciNet  Google Scholar 

  • Behnke, H. and Sommer, F. (1962). Theorie Der Analytischen Funktionen Einer Komplexen Veränderlichen, Springer-Verlag, Berlin, Göttingen, Heidelberg.

    MATH  Google Scholar 

  • Bochner, S. (1933). Monotone Funktionen, Stieltjessche intergrale und harmonische analyse, Math. Annalen 108, 378–410.

    Article  MathSciNet  Google Scholar 

  • Boerner, H. (1955). Darstellungen von Gruppen, Springer, Berlin, Göttingen, Heidelberg.

    MATH  Google Scholar 

  • Bourbaki, N. (1989). Lie Groups and Lie Algebras, Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, Chapters 1–3.

    MATH  Google Scholar 

  • Fock, V. (1935). Zur Theorie des Wasserstoffatoms. Zeitschrift für Physik 98, 145–154.

    Article  ADS  MATH  Google Scholar 

  • Folland, G. B. (1995). A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, Ann Arbor, London, Tokyo.

    MATH  Google Scholar 

  • Fulton, W. and Harris, J. (1991). Representation Theory, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Gel'fand, I. M., Graev, M. I., and Vilenkin, N. Y. (1962). Generalized Functions V (Integral Geometry and Representation Theory) (English translation 1966), Academic Press, New York, London.

  • Gel'fand, I. M. and Neumark, M. A. (1950). Unitäre Darstellungen der klassischen Gruppen (German Translation 1957), Akademie Verlag, Berlin.

  • Gel'fand, I. M. and Raikov, D. A. (1942). Irreducible unitary representations of locally bicompact groups, Mat. Sbornik 13(55), 301–316.

    MathSciNet  Google Scholar 

  • Gel'fand, I. M. and Shilov, G. E. (1958). Generalized Functions I (Properties and Operations) (English translation 1963), Academic Press, New York, London.

  • Heisenberg, W. (1967). Einführung in die einheitliche Feldtheorie der Elementarteilchen, Hirzel, Stuttgart.

    Google Scholar 

  • Helgason, S. (1984). Groups and Geometric Analysis, Academic Press, New York, London, Sydney, Tokyo, Toronto.

    MATH  Google Scholar 

  • Hucks, J. (1991). Global structure of the standard model, anomalies and charge quantization. Physical Review D 43, 2709–2717.

    Article  MathSciNet  ADS  Google Scholar 

  • Kirillov, A. A. (1976). Elements of the Theory of Representations, Springer-Verlag, Berlin, Heidelberg, New York.

    MATH  Google Scholar 

  • Knapp, A. (1986). Representation Theory of Semisimple Groups, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Mackey, G. W. (1951). On induced representations of groups. American Journal of Mathematics 73, 576–592.

    Article  MathSciNet  MATH  Google Scholar 

  • Neumark, M. A. (1958, German Translation 1963). Lineare Darstellungen der Lorentzgruppe, VEB Deutscher Verlag der Wissenschaften, Berlin.

  • Peter, F. and Weyl, H. (1927). Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Annalen 97, 737–755.

    Article  MathSciNet  MATH  Google Scholar 

  • Saller, H. (1989). On the nondecomposable time representations in quantum theories. Nuovo Cimento 104B, 291–337.

    ADS  MathSciNet  Google Scholar 

  • Saller, H. (1992). On the isospin–hypercharge connection. Nuovo Cimento 105A, 1745–1758.

    ADS  MathSciNet  Google Scholar 

  • Saller, H. (1997a). Analysis of time–space translations in quantum fields. International Journal of Theoretical Physics 36, 1033–1071.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Saller, H. (1997b). Realizations of causal manifolds by quantum fields. International Journal of Theoretical Physics 36, 2783–2826.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Saller, H. (1998a). Central correlations of hypercharge, isospin, colour and chirality in the standard model. Nuovo Cimento 111A, 1375–1392.

    ADS  Google Scholar 

  • Saller, H. (1998b). External–internal group quotient structure for the standard model in analogy to general relativity. International Journal of Theoretical Physics 37, 2333–2362.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Saller, H. (1999). Representations of spacetime as unitary operation classes; or Against the monoculture of particle fields. International Journal of Theoretical Physics 38, 1697–1733.

    Article  MathSciNet  MATH  Google Scholar 

  • Saller, H. (2001a). Residual representations of spacetime. International Journal of Theoretical Physics 40, 1209–1248. hep-th/0010057.

    Article  MathSciNet  MATH  Google Scholar 

  • Saller, H. (2001b). Symmetry reduction from interactions to particles. International Journal of Theoretical Physics 40, 1151–1172, hepth/0011265.

    Article  MathSciNet  MATH  Google Scholar 

  • Saller, H. (2003). Matter as spectrum of spacetime representations, hepth/0304034.

  • Saller, H. (2004). The basic physical Lie operations, hep-th/0410147.

  • Saller, H. (2005). Hilbert spaces for stable and unstable particles, hep-th/0501074.

  • Schur, I. (1905). Neue Begründung der Gruppencharaktere, Sitzungsber. Preuss. Akad., 406.

  • Sherman, T. O. (1975). Fourier analysis on the sphere. Transactions of the American Mathematical Society 209, 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Strichartz, R. S. (1973). Harmonic analysis on hyperboloids. Journal of Functional Analysis 12, 341–383.

    Article  MathSciNet  MATH  Google Scholar 

  • Treves, F. (1967). Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, London.

    MATH  Google Scholar 

  • Vilenkin, N. J. and Klimyk, A. U. (1991). Representations of Lie Groups and Special Functions, Kluwer Academic Publishers, Dordrecht, Boston, London.

    Google Scholar 

  • Wigner, E. P. (1939). On unitary representations of the inhomogeneous Lorentz group. Annals of Mathematics 40, 149–204.

    Article  MathSciNet  Google Scholar 

  • Weinberg, S. (1967). A model of leptons. Physical Review Letters 18, 507.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Saller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saller, H. Gauge Coupling Constants as Residues of Spacetime Representations. Int J Theor Phys 45, 276–342 (2006). https://doi.org/10.1007/s10773-005-9021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-9021-z

Keywords

Navigation