Skip to main content
Log in

Finitary-Algebraic ‘Resolution’ of the Inner Schwarzschild Singularity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A ‘resolution’ of the interior singularity of the spherically symmetric Schwarzschild solution of the Einstein equations for the gravitational field of a point-particle is carried out entirely and solely by finitistic and algebraic means. To this end, the background differential spacetime manifold and, in extenso, Differential Calculus-free purely algebraic (:sheaf-theoretic) conceptual and technical machinery of Abstract Differential Geometry (ADG) is employed. As in previous works [Mallios, A. and Raptis, I. (2001). Finitary spacetime sheaves of quantum causal sets: Curving quantum causality. International Journal of Theoretical Physics, 40, 1885 [gr-qc/0102097]; Mallios, A. and Raptis, I. (2002). Finitary Čech-de Rham cohomology. International Journal of Theoretical Physics, 41, 1857 [gr-qc/0110033]; Mallios, A. and Raptis, I. (2003). Finitary, causal and quantal vacuum Einstein gravity. International Journal of Theoretical Physics 42, 1479 [gr-qc/0209048]], which this paper continues, the starting point for the present application of ADG is Sorkin's finitary (:locally finite) poset (:partially ordered set) substitutes of continuous manifolds in their Gel'fand-dual picture in terms of discrete differential incidence algebras and the finitary spacetime sheaves thereof. It is shown that the Einstein equations hold not only at the finitary poset level of ‘discrete events,’ but also at a suitable ‘classical spacetime continuum limit’ of the said finitary sheaves and the associated differential triads that they define ADG-theoretically. The upshot of this is two-fold: On the one hand, the field equations are seen to hold when only finitely many events or ‘degrees of freedom’ of the gravitational field are involved, so that no infinity or uncontrollable divergence of the latter arises at all in our inherently finitistic-algebraic scenario. On the other hand, the law of gravity—still modelled in ADG by a differential equation proper—does not break down in any (differential geometric) sense in the vicinity of the locus of the point-mass as it is traditionally maintained in the usual manifold-based analysis of spacetime singularities in General Relativity (GR). At the end, some brief remarks are made on the potential import of ADG-theoretic ideas in developing a genuinely background-independent Quantum Gravity (QG). A brief comparison between the ‘resolution’ proposed here and a recent resolution of the inner Schwarzschild singularity by Loop QG means concludes the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Álvarez, E. (2004). Quantum gravity, pre-print [gr-qc/0405107].

  • Ashtekar, A. (1986). New variables for classical and quantum gravity. Physical Review Letters 57, 2244.

    Article  ADS  MathSciNet  Google Scholar 

  • Ashtekar, A. (2003). Quantum geometry and its ramifications. In The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking's 60th Birthday, G. W. Gibbons, E. P. S. Shellard, and S. J. Rankin, eds., Cambridge University Press, Cambridge.

  • Ashtekar, A., Bojowald, M., and Lewandowski, J. (2003). Mathematical Structure of Loop Quantum Cosmology, pre-print [gr-qc/0304074].

  • Ashtekar, A. and Lewandowski, J. (1995). Differential geometry on the space of connections via graphs and projective limits. Journal of Geometry and Physics 17, 191.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Ashtekar, A. and Lewandowski, J. (1997a). Quantum theory of geometry I: Area operators. Classical and Quantum Gravity 14, A55.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Ashtekar, A. and Lewandowski, J. (1997b). Quantum theory of geometry II: Volume operators. Advances in Theoretical and Mathematical Physics 1, 388.

    MATH  MathSciNet  Google Scholar 

  • Ashtekar, A. and Lewandowski, J. (2004). Background independent quantum gravity: A status report, pre-print [gr-qc/0404018].

  • Bergmann, P. G. (1979). Unitary field theory: Geometrization of physics or physicalization of geometry?. In The 1979 Berlin Einstein Symposium, Lecture Notes in Physics, Springer-Verlag, Berlin Heidelberg New York.

  • Bojowald, M. (2001a). Absence of singularity in loop quantum cosmology. Physical Review Letters 86, 5227.

    Article  ADS  MathSciNet  Google Scholar 

  • Bojowald, M. (2001b). Loop quantum cosmology IV: Discrete time evolution. Classical and Quantum Gravity 18, 1071.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1987). Space-time as a causal set. Physical Review Letters 59, 521.

    Article  ADS  MathSciNet  Google Scholar 

  • Clarke, C. J. S. (1986). Singularities: Local and global aspects. In Topological Properties and Global Structure of Space-Time, P. G. Bergmann and V. De Sabbata, eds., NATO ASI Series, Plenum Press, New York and London.

  • Clarke, C. J. S. (1993). The Analysis of Space-Time Singularities, Cambridge Lecture Notes in Physics, Cambridge University Press, Cambridge.

  • Colombeau, J.-F. (1984). New Generalized Functions and Multiplication of Distributions, Mathematical Studies 84, North-Holland, Amsterdam.

  • Einstein, A. (1956). The Meaning of Relativity, 5th edn., Princeton University Press, Princeton.

    Google Scholar 

  • Finkelstein, D. (1958). Past-future asymmetry of the gravitational field of a point particle. Physical Review 110, 965.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Geroch, R. (1968). What is a singularity in General Relativity? Annals of Physics 48, 526.

    Article  MATH  ADS  Google Scholar 

  • Geroch, R., Kronheimer, E. H., and Penrose, R. (1972). Ideal points in space-time and singularities. Proceedings of the Royal Society London A 327, 545.

    Google Scholar 

  • Grauert, H. and Remmert, R. (1984). Coherent Analytic Sheaves, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Gruszczak, J. and Heller, M. (1993). Differential structure of space-time and its prolongations to singular boundaries. International Journal of Theoretical Physics 32, 625.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Hawking, S. W. and Penrose, R. (1970). The singularities of gravitational collapse and cosmology. Proceedings of the Royal Society London A 314, 529.

  • Hawking, S. W. and Penrose, R. (1996). The Nature of Space and Time, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Heller, M. (1991). Algebraic foundations of the theory of differential spaces. Demonstratio Mathematicum 24, 349.

    MATH  MathSciNet  Google Scholar 

  • Heller, M. (1992). Einstein algebras and general relativity. International Journal of Theoretical Physics 31, 277.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Heller, M. (1993). Geometry of transition to quantum gravity regime. Acta Physica Polonica B24, 911.

    MathSciNet  Google Scholar 

  • Heller, M., Multarzynski, P., and Sasin, W. (1989). The algebraic approach to space-time geometry. Acta Cosmologica XVI, 53.

    ADS  Google Scholar 

  • Heller, M. and Sasin, W. (1993). Generalized Friedman's equation and its singularities. Acta Cosmologica XIX, 23.

    ADS  Google Scholar 

  • Heller, M. and Sasin, W. (1995a). Sheaves of Einstein algebras. International Journal of Theoretical Physics 34, 387.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Heller, M. and Sasin, W. (1995b). Structured spaces and their application to relativistic physics. Journal of Mathematical Physics 36, 3644.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Husain, V. and Winkler, O. (2004). Quantum resolution of black hole singularities, pre-print [gr-qc/0410125].

  • Isham, C. J. (1991). Canonical groups and the quantization of geometry and topology. In Conceptual Problems of Quantum Gravity, A. Ashtekar and J. Stachel, eds., Birkhäuser, Basel.

  • Kopperman, R. D. and Wilson, R. G. (1997). Finite approximation of compact Hausdorff spaces. Topology Proceedings 22, 175.

    Google Scholar 

  • Kruskal, M. (1960). Maximal extension of the Schwarzschild metric. Physical Review 119, 1743.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Mallios, A. (1986). Topological Algebras. Selected Topics, North-Holland, Amsterdam.

    Book  MATH  Google Scholar 

  • Mallios, A. (1988). On the existence of \({\cal A}\)-connections. Abstracts of the American Mathematical Society 9, 509.

    Google Scholar 

  • Mallios, A. (1992). On an abstract form of Weil's integrality theorem. Note di Matematica 12, 167 (invited paper).

    Google Scholar 

  • Mallios, A. (1993). The de Rham-Kähler complex of the Gel'fand sheaf of a topological algebra. Journal of Mathematical Analysis and Applications 175, 143.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. (1998a). Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, vols. 1–2, Kluwer, Dordrecht.

    Google Scholar 

  • Mallios, A. (1998b). On an axiomatic treatment of differential geometry via vector sheaves. Applications. Mathematica Japonica (International Plaza) 48, 93 (invited paper).

  • Mallios, A. (2001). Abstract differential geometry, general relativity and singularities. In Unsolved Problems in Mathematics for the 21st Century: A Tribute to Kiyoshi Iséki's 80th Birthday, J. M. Abe and S. Tanaka, eds., 77, IOS Press, Amsterdam (invited paper).

  • Mallios, A. (2002). Abstract differential geometry, singularities and physical applications. In Topological Algebras with Applications to Differential Geometry and Mathematical Physics, P. Strantzalos and M. Fragoulopoulou, eds., Proceedings of a Fest-Colloquium in Honour of Professor Anastasios Mallios (16–18/9/1999), Department of Mathematics, University of Athens Publications.

  • Mallios, A. (2003). Remarks on “singularities.” In Progress in Mathematical Physics, F. Columbus, ed., Nova Science Publishers, Hauppauge, New York (invited paper) [gr-qc/0202028] (in press).

  • Mallios, A. (2004a). On localizing topological algebras. Contemporary Mathematics 341, 79 [gr-qc/0211032].

    Google Scholar 

  • Mallios, A. (2004b). Geometry and physics of today, pre-print (2004) [physics/0405112].

  • Mallios, A. (2005a). Quantum gravity and “singularities,” Note di Matematica (invited paper) [physics/0405111] (in press).

  • Mallios, A. (2005). Modern Di®erential Geometry in Gauge Theories. Vol. I: Maxwell Fields, Vol. II: Yang-Mills Fields. Birkhauser, Boston.

  • Mallios, A. and Raptis, I. (2001). Finitary spacetime sheaves of quantum causal sets: Curving quantum causality. International Journal of Theoretical Physics 40, 1885 [gr-qc/0102097].

    Google Scholar 

  • Mallios, A. and Raptis, I. (2002). Finitary Čech-de Rham Cohomology. International Journal of Theoretical Physics 41, 1857 [gr-qc/0110033].

    Google Scholar 

  • Mallios, A. and Raptis, I. (2003). Finitary, causal and quantal vacuum Einstein gravity. International Journal of Theoretical Physics 42, 1479 [gr-qc/0209048].

    Google Scholar 

  • Mallios, A. and Raptis, I. (2004). \({\cal C}^{\infty}\)-Smooth singularities exposed: Chimeras of the differential spacetime manifold, ‘paper-book’/research monograph [gr-qc/0411121].

  • Mallios, A. and Rosinger, E. E. (1999). Abstract differential geometry, differential algebras of generalized functions and de Rham cohomology. Acta Applicandae Mathematicae 55, 231.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Rosinger, E. E. (2001). Space-time foam dense singularities and de Rham cohomology. Acta Applicandae Mathematicae 67, 59.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Rosinger, E. E. (2002). Dense singularities and de Rham cohomology. In Topological Algebras with Applications to Differential Geometry and Mathematical Physics, P. Strantzalos and M. Fragoulopoulou, eds., Proceedings of a Fest-Colloquium in Honour of Professor Anastasios Mallios (16–18/9/1999), Department of Mathematics, University of Athens Publications.

  • Modesto, L. (2004). Disappearance of the black hole singularity in quantum gravity, pre-print [gr-qc/0407097].

  • Papatriantafillou, M. H. (2000). The category of differential triads. In Proceedings of the 4th Panhellenic Conference on Geometry (Patras, 1999), Bulletin of the Greek Mathematical Society 44, 129.

  • Papatriantafillou, M. H. (2001). Projective and inductive limits of differential triads. In Steps in Differential Geometry, Proceedings of the Institute of Mathematics and Informatics Debrecen (Hungary), 251.

  • Papatriantafillou, M. H. (2003). On a universal property of differential triads, pre-print [An earlier draft of this paper, which is the one we possess, was titled Morphisms of Differential Triads].

  • Papatriantafillou, M. H. (2004). Initial and final differential structures. In Proceedings of the International Conference on Topological Algebras and Applications: ‘Non-normed Topological Algebras,’ Rabat, Maroc (2003), ENST publications 2, 115.

  • Papatriantafillou, M. H. (2005). Abstract Differential Geometry. A Categorical Perspective (in preparation).

  • Penrose, R. (2003). The problem of spacetime singularities: Implications for quantum gravity? In The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking's 60th Birthday, G. W. Gibbons, E. P. S. Shellard, and S. J. Rankin, eds., Cambridge University Press, Cambridge.

  • Raptis, I. (2000a). Algebraic quantization of causal sets. International Journal of Theoretical Physics 39, 1233 [gr-qc/9906103].

    Google Scholar 

  • Raptis, I. (2000b). Finitary spacetime sheaves. International Journal of Theoretical Physics 39, 1703 [gr-qc/0102108].

    Google Scholar 

  • Raptis, I. (2003). Quantum space-time as a quantum causal set. In a significantly modified and expanded version of the Los Alamos e-arXiv posted paper in the volume Progress in Mathematical Physics, F. Columbus, ed., Nova Science Publishers, Hauppauge, New York (invited paper) [gr-qc/0201004].

  • Raptis, I. and Zapatrin, R. R. (2000). Quantization of discretized spacetimes and the correspondence principle. International Journal of Theoretical Physics 39, 1 [gr-qc/9904079].

    Google Scholar 

  • Raptis, I. and Zapatrin, R. R. (2001). Algebraic description of spacetime foam. Classical and Quantum Gravity 20, 4187 [gr-qc/0102048].

    Google Scholar 

  • Rendall, A. D. (2005). The nature of spacetime singularities, pre-print [gr-qc/0503112].

  • Rosinger, E. E. (1990). Non-Linear Partial Differential Equations. An Algebraic View of Generalized Solutions, North-Holland, Amsterdam.

    Google Scholar 

  • Rosinger, E. E. (1999). Space-time foam differential algebras of generalized functions and a global Cauchy-Kovaleskaya theorem, Technical Report UPWT 99/8, Department of Mathematics, University of Pretoria, Republic of South Africa.

  • Rosinger, E. E. (1999). Differential algebras with dense singularities on manifolds, Technical Report UPWT 99/9, Department of Mathematics, University of Pretoria, Republic of South Africa.

  • Rosinger, E. E. (2005). Dense Singularities and Non-Linear Partial Differential Equations, monograph (in press).

  • Rovelli, C. (2002). Partial observables. Physical Review D 65, 124013 [gr-qc/0110035].

  • Rovelli, C. and Smolin, L. (1990). Loop space representation of quantum general relativity. Nuclear Physics B 331, 80.

    ADS  MathSciNet  Google Scholar 

  • Rovelli, C. and Smolin, L. (1995). Discreteness of area and volume in quantum gravity. Nuclear Physics B 442, 593. [Erratum: Nuclear Physics B 456, 734.]

  • Schmidt, B. (1971). A new definition of singular points in general relativity. General Relativity and Gravitation 1, 269.

    Article  MATH  ADS  Google Scholar 

  • Smolin, L. (2004). An invitation to loop quantum gravity, pre-print [gr-qc/0408048].

  • Sorkin, R. D. (1990). Does a discrete order underlie spacetime and its metric? In Proceedings of the Third Canadian Conference on General Relativity and Relativistic Astrophysics, F. Cooperstock and B. Tupper, eds., World Scientific, Singapore.

  • Sorkin, R. D. (1991). Finitary substitute for continuous topology. International Journal of Theoretical Physics 30, 923.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Sorkin, R. D. (1995). A specimen of theory construction from quantum gravity. In The Creation of Ideas in Physics, J. Leplin, ed., Kluwer Academic Publishers, Dordrecht [gr-qc/9511063].

  • Sorkin, R. D. (1997). Forks in the road, on the way to quantum gravity. International Journal of Theoretical Physics 36, 2759 [gr-qc/9706002].

    Google Scholar 

  • Thiemann, T. (1998). A length operator for canonical quantum gravity. Journal of Mathematical Physics 39, 3372.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Thiemann, T. (2001). Introduction to modern canonical quantum general relativity, pre-print [gr-qc/0110034].

  • Thiemann, T. (2002). Lectures on Loop Quantum Gravity, pre-print [gr-qc/0210094].

  • Thompson, G. (2001). On Leibniz, Wadsworth Philosophical Series, Wadsworth, USA.

    Google Scholar 

  • Vassiliou, E. (1994). On Mallios' \({\cal A}\)-connections as connections on principal sheaves. Note di Matematica 14, 237.

    MATH  MathSciNet  Google Scholar 

  • Vassiliou, E. (1999). Connections on principal sheaves. In New Developments in Differential Geometry, J. Szenthe, ed., Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Vassiliou, E. (2000). On the geometry of associated sheaves. Bulletin of the Greek Mathematical Society 44, 157.

    MATH  MathSciNet  Google Scholar 

  • Vassiliou, E. (2005). Geometry of Principal Sheaves, Springer-Verlag, Berlin-New York.

  • Zapatrin, R. R. (1998). Finitary algebraic superspace. International Journal of Theoretical Physics 37, 799.

    Article  MATH  MathSciNet  Google Scholar 

  • Zapatrin, R. R. (2001). Continuous limits of discrete differential manifolds, pre-print. [This pre-print can be retrieved from Roman Zapatrin's personal webpage: http://www.isiosf.isi.it/~zapatrin.]

  • Zapatrin, R. R. (2002). Incidence algebras of simplicial complexes, Pure Mathematics and its Applications (in press) [math.CO/0001065].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Raptis.

Additional information

PACS numbers: 04.60.−m, 04.20.Gz, 04.20.−q

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raptis, I. Finitary-Algebraic ‘Resolution’ of the Inner Schwarzschild Singularity. Int J Theor Phys 45, 79–128 (2006). https://doi.org/10.1007/s10773-005-9011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-9011-1

Keywords

Navigation