Skip to main content
Log in

Scalar Gravity and Higgs Mechanism

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The role that the auxiliary scalar field φ plays in Brans–Dicke cosmology is discussed. If a constant vacuum energy is assumed to be the origin of dark energy, then the corresponding density parameter would be a quantity varying with φ; and almost all of the fundamental components of our universe can be unified into the dynamical equation for φ. As a generalization of Brans–Dicke theory, we propose a new gravity theory with a complex scalar field ϕ which is coupled to the cosmological curvature scalar. Through such a coupling, the Higgs mechanism is naturally incorporated into the evolution of the universe, and a running density of the field vacuum energy is obtained which may release the particle standard model from the rigorous cosmological constant problem in some sense. Our model predicts a running mass scale of the fundamental particles in which the gauge symmetry breaks spontaneously. The running speed of the mass scale in our case could survive all existing experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, C. L., Halpern, M., Hinshaw, G., et al. (2003). Astrophys. J. Suppl. 148, 1, astro-ph/0302207.

  • Brans, C. H. (1962). Physics Reviews 125, 2194.

    ADS  MATH  MathSciNet  Google Scholar 

  • Brans, C. H. (2005). gr-qc/9705069.

  • Brans, C. H. and Dicke, R. H. (1961). Physics Reviews 124, 925.

    ADS  MathSciNet  Google Scholar 

  • Burgess, C. P., Kallosh, R., and Quevedo, F. (2003). JHEP 0310, 056, hep-th/0309187.

  • Carroll, S. (2001). Living Reviews of Relativity 4, 1.

    ADS  MATH  Google Scholar 

  • Chen, X. L. and Kamionkowski, M. (1999). Physics Reviews D 60, 104036.

    ADS  Google Scholar 

  • Garriga, J. and Vilenkin, A. (2000). Physical Review D 61, 083502.

    ADS  Google Scholar 

  • Gaztanaga, E. and Lobo, J. A. (2001). Astrophysics Journal 548, 47–59.

    ADS  Google Scholar 

  • Gutperle, M., Kallosh, R., and Linde, A. (2003). JCAP 0307, 001 hep-th/0304225.

  • Kachru, S., Kallosh, R., Linde, A., and Trivedi, S. P. (2005). Physical Reviews D 68, 046005, hep-th/0301240.

  • Kallosh, R., Linde, A., Prokushkin, S., and Shmakova, M. (2000). Physical Reviews D 66, 123503.

    ADS  MathSciNet  Google Scholar 

  • Peebles, P. J. E. and Ratra, B. (2005). astro-ph/0207347.

  • Perlmutter, S., Aldering, G., Dellva Aalle, M., et al. (1998). Nature 391, 51–54, astro-ph/9712212.

  • Perlmutter, S. (1997). astro-ph/9712212.

  • Riess, A. G., Filippenko, A. V., Challis, P., et al. (1998). Astron. J. 116, 1009–1038, astro-ph/9805201.

    Google Scholar 

  • Turner, M. S. (2000). Physics Report 333–334, 619.

  • Weiberg, S. (1987). Physics Review Letters 59, 2607.

    ADS  Google Scholar 

  • Weiberg, A. (1999). artro-ph/9908115.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CY., Li, K. & Shen, YG. Scalar Gravity and Higgs Mechanism. Int J Theor Phys 44, 1531–1540 (2005). https://doi.org/10.1007/s10773-005-4782-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-4782-y

Keywords

Navigation