Skip to main content
Log in

Plane Waves Propagating in Gases Composed of Composite Particles

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantum discrete kinetic equations are solved to study the propagation of plane waves in a system of composite particles with hard-sphere interactions and the filling factor (ν) being 1/2. We compare the dispersion relations thus obtained by the relevant Pauli-blocking parameter B which describes the different-statistics particles for the quantum analog of the discrete Boltzmann system when B is positive (Bose gases), zero (Boltzmann gases), and negative (Fermi Gases). We found, as the effective magnetic field being zero (ν = 1/2 using the composite fermion formulation), the electric field effect will induce anomalous dispersion relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agop, M., Ioannou, P. D., Gh, C., and Buzea, P. (2003). Nica, Physica C 390, 37.

    ADS  Google Scholar 

  • Andrews, M. R., Stamper-Kurn, D. M., et al. (1998). Physical Review Letters 80, 2967.

    Article  ADS  Google Scholar 

  • Avancini, S. S. and Krein, G. (1995). Journal of Physics A: Mathematics and General 28, 685.

    ADS  MathSciNet  Google Scholar 

  • Braun, M. A. and Vechernin, V. V. (2004). Theoretical and Mathematical Physics 139, 766.

    Article  MathSciNet  Google Scholar 

  • Burkard, G., Loss, D., and DiVincenzo, D. P. (1999). Phys. Rev. B 59, 2070; Hu, X. and Das Sarma, S. (2000). Physical Review A 61, 062301.

  • Butler, W. H., Zhang, X. -G., and MacLaren, J. M. (2000). J. Superconductivity: Incorporating Novel Magnetism 13, 221; Noce, C. and Cuoco, M. (2000). Physica B 284–288, 1972.

  • Caldwell, R. R. (2002). Phys. Lett. B 545, 23.

    ADS  Google Scholar 

  • Chu, A. K.-H. (1999a). J. Phys. : Cond. Matter 11, 8819; Chu, A. K.-H. (1999b). European Physics Journal B 10, 1.

  • Chu, A. K.-H. (2002a). Physical Review E 66, 047106; Chu, A. K.-H. (2003). Preprint.

  • Chu, A. K.-H. (2004a). Physica Scripta 69, 170.

    Article  ADS  Google Scholar 

  • Chu, A. K.-H. (2004b). Preprint.

  • Dorozhkin, S. I., Smet, J. H., von Klitzing, K., Umansky, V., Wegscheider, W., Haug, R. J., and Ploog, K. (2002). Physica E 12, 97.

    Article  ADS  Google Scholar 

  • Fradkin, E., Nayak, C., Tsvelik, A., and Wilczek, F. (1998). Nuclear Physics B [FS] 516, 704.

  • Ichinose, I. and Matsui, T. (2003). Physica E 18, 132.

    ADS  Google Scholar 

  • Grad, H. (1966). SIAM Journal of Applied Mathematics 14, 932.

    Article  MathSciNet  Google Scholar 

  • Ghirardi, G. C. and Marinatto, L. (2004). Fortschritte der Physik 52, 1045.

    Article  MathSciNet  Google Scholar 

  • Jain, J. K. (2000). Physics Today 50, 39.

    Google Scholar 

  • Jobst, S., Zwerschkeb, S., Smet, J. H., Gerhardts, R. R., Weiss, D., von Klitzing, K., and Umansky, V. (2000). Physica E 6, 87.

    Article  ADS  Google Scholar 

  • Harju, A. Siljamäki, S., and Nieminen, R. M. (2002). Physics Review Letters 88, 226804.

    Article  ADS  Google Scholar 

  • Heinonen, O. (ed). (1998). Composite Fermions: A Unified View of the Quantum Hall Regime, World Scientific, Singapore (Contains the following review articles: Jain, J. K., and Kamilla, R. K., pp. 1; Simon, S. H., pp. 91; A. Lopez and E. Fradkin, pp. 195; G. Murthy and R. Shankar, pp. 254; G. Kirczenow and Johnson, B. L., pp. 307; Willet, R. L., pp. 349; Smet, J. H., pp. 443.)

  • Kneser, H. O. (1961). In Handbuch der Physik, S. Flügge, ed., Bd. XI/1, Springer, Berlin, p. 129.

  • Kuze, M. and Sirois, Y. (2003). Progress in Particle and Nuclear Physics 50, l.

  • Lee, T. D., Huang, K., and Yang, C. N. (1957). Phys. Rev. 106, 1135; Lee, T. D. and Yang, C. N. (1957). Physical Review 105, 1119.

  • Platkowski, T. and Illner, R. (1988). SIAM Rev. 30, 213; Bellomo, N. and Gustafsson, T. (1991). Review of Mathematical Physics 3, 137.

  • Schrieffer, J. R. (2004). Current Applied Physics 4, 465.

    Article  Google Scholar 

  • Stamper-Kurn, D. M., Miesner, H. -J., et al. (1998). Physical Review Letters 81, 500.

    ADS  Google Scholar 

  • Ustinov, V. V. and Kravtsov, E. A. (1995). Journal of Physics: Condensed Matter 7, 3471.

    Article  ADS  Google Scholar 

  • Vedenyapin, V. V., Mingalev, I. V., and Mingalev, O. V. (1995). Russian Academy of Sciences Sbornik Mathematics 80, 271; Uehling, E. A. and Uhlenbeck, G. E. (1933). Physical Review 43, 552.

    Google Scholar 

  • Willett, R. L. and Pfeiffer, L. N. (1996). Physica B 219–220, 1.

  • Willett, R. L., Pfeiffer, L. N., and West, K. W. (1998). Physica B 256–258, 215.

    Google Scholar 

  • Yabu, H., Takayama, Y., Suzuki, T., and Schuck, P. (2004). Nuclear Physics A 738, 273.

    Article  ADS  Google Scholar 

  • Zimbovskaya, N. A. (2003). Solid State Communications 128, 19.

    Article  Google Scholar 

  • Zwerschke, S. D. M. and Gerhardts, R. R. (1998). Physica B 256-258, 28.

    Article  ADS  Google Scholar 

  • Zwerschke, S. D. M. and Gerhardts, R. R. (2001). Physica B 298, 353.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kwang-Hua Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, A.KH. Plane Waves Propagating in Gases Composed of Composite Particles. Int J Theor Phys 44, 1429–1439 (2005). https://doi.org/10.1007/s10773-005-4777-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-4777-8

Keywords

Navigation