Skip to main content
Log in

Hestenes' Tetrad and Spin Connections

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Defining a spin connection is necessary for formulating Dirac's bispinor equation in a curved space-time. Hestenes has shown that a bispinor field is equivalent to an orthonormal tetrad of vector fields together with a complex scalar field. In this paper, we show that using Hestenes' tetrad for the spin connection in a Riemannian space-time leads to a Yang-Mills formulation of the Dirac Lagrangian in which the bispinor field Ψ is mapped to a set of SL(2,RU(1) gauge potentials F α K and a complex scalar field ρ. This result was previously proved for a Minkowski space-time using Fierz identities. As an application we derive several different non-Riemannian spin connections found in the literature directly from an arbitrary linear connection acting on the tensor fields (F α K, ρ). We also derive spin connections for which Dirac's bispinor equation is form invariant. Previous work has not considered form invariance of the Dirac equation as a criterion for defining a general spin connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison, I. J. R. and Hey, A. J. G. (1982). Gauge Theories in Particle Physics, Adam Hilger, Bristol, pp. 192–211, 310–311.

  • Ashtekar, A. and Geroch, R. (1974). Quantum theory of gravitation. Report on Progress of Physics 37, 1211–1256.

    ADS  Google Scholar 

  • Bjorken, J. D. and Drell, S. D. (1964). Relativistic Quantum Mechanics, McGraw Hill, New York, pp. 16–26, 66–70.

  • Bogoliubov, N. N. and Shirkov, D. V. (1983). Quantum Fields, Benjamin/Cummings, London, pp. 46–47.

  • de Andrade, V., Guillen, L., and Pereira, J. (2001). Teleparallel spin connection. Physical Review D 64, 027502.

    Article  MathSciNet  ADS  Google Scholar 

  • Geroch, R. (1968). Spinor structure of space-times in general relativity I. Journal of Mathematical Physics 9, 1739–1744.

    MathSciNet  MATH  ADS  Google Scholar 

  • Hamilton, J. D. (1984). The Dirac equation and Hestenes' geometric algebra. Journal of Mathematical Physics 25, 1823–1832.

    Article  MathSciNet  ADS  Google Scholar 

  • Hammond, R. T. (2002). Torsion gravity. Reports on Progress of Physics 65, 559–649.

    MathSciNet  ADS  Google Scholar 

  • Hehl, F. W. and Datta, B. K. (1971). Nonlinear spinor equation and asymmetric connection in general relativity. Journal of Mathematical Physics 12, 1334–1339.

    Article  MathSciNet  ADS  Google Scholar 

  • Hestenes, D. (1967). Real spinor fields. Journal of Mathematical Physics 8, 798–808.

    ADS  Google Scholar 

  • Hestenes, D. (1971). Vectors, spinors, and complex numbers in classical and quantum physics. American Journal of Physics 39, 1013–1027.

    MathSciNet  ADS  Google Scholar 

  • Hegerfeldt, G. C. and Ruijsenaars, S. N. M. (1980). Remarks on causality, localization, and spreading of wave packets. Physics Review D 22, 377–384.

    Article  MathSciNet  ADS  Google Scholar 

  • Hurley, D. J. and Vandyck, M. A. (2000). Geometry, Spinors and Applications, Springer-Verlag-Praxis, London.

    MATH  Google Scholar 

  • Jhangiani, V. (1977). Geometric Significance of the Spinor Covariant Derivative. Foundations of Physics 7, 111–120.

    Article  MathSciNet  ADS  Google Scholar 

  • Mandl, F. and Shaw, G. (1986). Quantum Field Theory, Wiley, New York, pp. 80, 279–289.

  • O'Raifeartaigh, L. (1997). The Dawning of Gauge Theory, Princeton University Press, Princeton, pp. 112–116, 121–144.

  • Reifler, F. and Morris, R. (1992a). The Hamiltonian structure of Dirac's equation in tensor form and its Fermi quantization. Workshop on Squeezed States and Uncertainty Relations, D. Han, Y. S. Kim, and W. W. Zachary, eds., (NASA Conference Publication 3135), pp. 381–383.

  • Reifler, F. and Morris, R. (1992b). Unobservability of bispinor two-valuedness in Minkowski space-time. Annals of Physics 215, 264–276.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Reifler, F. and Morris, R. (1994). Fermi quantization of tensor systems. International Journal of Modern Physics A 9(31), 5507–5515.

    MathSciNet  ADS  MATH  Google Scholar 

  • Reifler, F. and Morris, R. (1995). Unification of the Dirac and Einstein Lagrangians in a tetrad model. Journal of Mathematical Physics 36, 1741–1752.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Reifler, F. and Morris, R. (1996). Inclusion of gauge bosons in the tensor formulation of the Dirac theory. Journal of Mathematical Physics 37, 3630–3640.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Reifler, F. and Morris, R. (1999). Flavor symmetry of the tensor Dirac theory. Journal of Mathematical Physics 40, 2680–2697.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Reifler, F. and Morris, R. (2000). Higgs field-fermion coupling in the tensor Dirac theory. International Journal of Theoretical Physics 39(11), 2633–2665.

    Google Scholar 

  • Reifler, F. and Morris, R. (2003). Measuring a Kaluza–Klein radius smaller than the Planck length. Physical Review D 67, 064006.

    Article  ADS  Google Scholar 

  • Reifler, F. and Vogt, A. (1994). Unique continuation of some dispersive waves. Commun. In Partial Differential Equations 19, 1203–1215.

    MathSciNet  MATH  Google Scholar 

  • Rodriguez-Romo, S. (1993). An analysis of Fierz identities, factorization, and inversion theorems. Foundation Physics 23, 1535–1542.

    MathSciNet  ADS  Google Scholar 

  • Rodriguez-Romo, S., Viniegra, F., and Keller, J. (1992). Geometrical content of the Fierz identities. Clifford Algebras and their Applications in Mathematical Physics, Montpellier, France, Micali, A., Boudet, R., and Helmstetter, J., eds., Kluwer, Dordrecht, pp. 479–497.

  • Silverman, M. P. (1980). The curious problem of spinor rotation. European Journal of Physics 1, 116–123.

    Article  ADS  Google Scholar 

  • Soper, D. E. (1976). Classical Field Theory, Wiley, New York, pp. 101–122, 222–225.

  • Takahashi, Y. (1983). The Fierz identities—A passage between spinors and tensors. Journal of Mathematical Physics 24, 1783–1790.

    Article  MathSciNet  ADS  Google Scholar 

  • Takahashi, Y. (1986). The Fierz identities. Progress in Quantum Field Theory, E. Ezawa and S. Kamefuchi, eds., Elsevier Science, Amsterdam, pp. 121–132.

  • Thaller, B. and Thaller, S. (1984). Remarks on the localization of Dirac particles. Il Nuovo Cimento 82A, 222–228.

    MathSciNet  ADS  Google Scholar 

  • Utiyama, R. (1956). Invariant Theoretical Interpretation of Interaction. Physical Review 101, 1597–1607.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Weinberg, S. (1972). Gravitation and Cosmology, Wiley, New York, pp. 365–373.

    Google Scholar 

  • Zhelnorovich, V. A. (1996). Cosmological solutions of the Einstein–Dirac equations. Gravitation and Cosmology 2, 109–116.

    MATH  ADS  Google Scholar 

  • Zhelnorovich, V. A. (1997). On Dirac equations in the formalism of spin coefficients. Gravitation and Cosmology 3, 97–99.

    MATH  ADS  Google Scholar 

  • Zhelnorovich, V. A. (1979). A tensor description of fields with half-integer spin. Soviet Physics Doklady 24, 899–901.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Reifler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reifler, F., Morris, R. Hestenes' Tetrad and Spin Connections. Int J Theor Phys 44, 1307–1324 (2005). https://doi.org/10.1007/s10773-005-4688-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-4688-8

Keywords

Navigation