Advertisement

International Journal of Theoretical Physics

, Volume 44, Issue 8, pp 1141–1156 | Cite as

Interpretations of Quantum Mechanics in Terms of Beable Algebras

  • Yuichiro KitajimaEmail author
Article

Abstract

In terms of beable algebras Halvorson and Clifton [International Journal of Theoretical Physics 38 (1999) 2441–2484] generalized the uniqueness theorem (Studies in History and Philosophy of Modern Physics 27 (1996) 181–219] which characterizes interpretations of quantum mechanics by preferred observables. We examine whether dispersion-free states on beable algebras in the generalized uniqueness theorem can be regarded as truth-value assignments in the case where a preferred observable is the set of all spectral projections of a density operator, and in the case where a preferred observable is the set of all spectral projections of the position operator as well.

Keywords

Beable algebra modal interpretation truth-value assignment dispersion-free state quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgartel, H. (1995). Operatoralgebraic Methods in Quantum Field Theory, Akademic Verlag, Berlin.Google Scholar
  2. Bell, J. S. (2004). Speakable and Unspeakable in Quantum Mechanics, 2nd edn., Cambridge University Press, Cambridge.Google Scholar
  3. Bub, J. and Clifton, R. (1996). A uniqueness theorem for “no collapse” interpretations of quantum mechanics. Studies in History and Philosophy of Modern Physics 27, 181–219.MathSciNetGoogle Scholar
  4. Bub, J., Clifton, R., and Goldstein, S. (2000). Revised proof of the uniqueness theorem for “no collapse” interpretations of quantum mechanics. Studies in History and Philosophy of Modern Physics 31, 95–98.MathSciNetGoogle Scholar
  5. Clifton, R. (1995). Independently motivating the Kochen–Dieks modal interpretation of quantum mechanics. British Journal for Philosophy of Science 46, 33–57.MathSciNetCrossRefGoogle Scholar
  6. Clifton, R. (2000). The modal interpretation of algebraic quantum field theory. Physics Letters A 271, 167–177.MathSciNetADSGoogle Scholar
  7. Doring, A. (2004). Kochen-Specker theorem for von Neumann algebras. quant-ph/0408106.Google Scholar
  8. Halvorson, H. and Clifton, R. (1999). Maximal beables subalgebras of quantum mechanical observables. International Journal of Theoretical Physics 38, 2441–2484.CrossRefMathSciNetzbMATHGoogle Scholar
  9. Halvorson, H. (2001). On the nature of continuous physical quantities in classical and quantum mechanics. Journal of Philosophical Logic 37, 27–50.MathSciNetGoogle Scholar
  10. Hamhalter, J. (1993). Pure Jauch-Piron States on von Neumann Algebras. Annales de l'Institut Poincare 58, 173–187.MathSciNetzbMATHGoogle Scholar
  11. Ishigaki, T. (2001). Definite properties in quantum mechanics. Kagaku Kisoron Kenkyu 97, 43–48 (in Japanese).Google Scholar
  12. Kadison, R. V. and Ringrose, J. R. (1997). Fundamentals of the Theory of Operator Algebras, American Mathematical Society, Providence, Rhode island.Google Scholar
  13. Kitajima, Y. (2004). A remark on the modal interpretation of algebraic quantum field theory. Physics Letters A 331, 181–186.CrossRefMathSciNetADSzbMATHGoogle Scholar
  14. Misra, B. (1967). When can hidden variables be excluded in quantum mechanics?. Nuovo Cimento, 47A, 841–859.ADSGoogle Scholar
  15. Plymen, R. J. (1968). Dispersion-free normal states. Il Nuovo Cimento 54, 862–870.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of PhilosophyKyoto UniversityJapan

Personalised recommendations