Skip to main content
Log in

Black Hole Entropies of the Thin Film Model and the Membrane Model Without Cutoffs

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Taking into account the effect of the generalized uncertainty principle on the generalized black hole entropy and tacking the thin film brick-wall model, we calculate the entropy of the quantum scalar field in generalized static black hole. The Bekenstein–Hawking entropies of all well-known static black holes are obtained. The entropy of 2-D membrane just at the event horizon of static black hole is also calculated, and the result of the black hole entropy proportional to the event horizon area can be obtained more easily and generally. This discussion shows that black hole entropy is just identified with the entropy of the quantum field on the event horizon. The difference from the original brick-wall model is that the present result is convergent without any cutoff and the little mass approximation is removed. With residue theorem, the integral difficulty in the calculation of black hole entropy is overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. J., Chen, P., and Santago, I. D. (2001). The generalized uncertainty principle and black holes remants. General Relativity and Gravitation 33, 2101; gr-gc/0106080.

    Google Scholar 

  • Ahlumalia, D. V. (2000). Wave-particle duality at the Plank scale: Freezing of neutrino oscillations. Physics Letters A 275, 31; gr-gc/0002005.

    Google Scholar 

  • Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D: Particles and Fields 7, 2333.

    Google Scholar 

  • Bekenstein, J. D. (1974). Generalizd second law of thermldynamics in black hole physics. Physical Review D: Particles and Fields 9, 3292.

    Google Scholar 

  • Chang, L. N., Minic, D., Okamura, N., and Tekeuchi, T. (2002). Eeffect of the minimal length uncertainty relation on the density of states and the cosmological constant problem. Physical Review D: Particles and Fields 65, 125028.

    Google Scholar 

  • Gao, C. J. and Liu, W. B. (2000). Entropy of Dirac field in Schwarzschild–de Sitter space–Time via membrane model. International Journal of Theoretical Physics 39, 2221.

    Google Scholar 

  • Garay, L. J. (1995). Quantum gravity and minimum length. International Journal of Modern Physics A 10, 145.

    Google Scholar 

  • Garfinkle, D., Horowitz, G. T., and Strominger, A. (1991). Charged black holes in string theory. Physical Review D: Particles and Fields 43, 3140.

    CAS  Google Scholar 

  • Ghosh, A. and Mitra, P. (1994). Entropy in Dilationic Black Hole Background. Physical Review Letters 73, 2521.

    CAS  PubMed  Google Scholar 

  • Gibbons, G. W. and Maeda, K. (1988). Black holes and membranes in higher-dimensional theories with dilaton fields. Nuclear Physics B 298, 741.

    Google Scholar 

  • Hawking, S. W. (1974). Black hole explosions. Nature(London) 248, 30.

    Google Scholar 

  • Hawking, S. W. (1975). Particle creation by black holes. Communications in Mathematical Physics 43, 199.

    Google Scholar 

  • Jing, J. L. (1998). Entropy of quantum scalar field in static black holes. International Journal of Theoretical Physics 37, 1441.

    CAS  MathSciNet  Google Scholar 

  • Jing, J. L. (2003). Quantum correction to entropy of the Kerr black hole due to Rarita–Schwinger fields. Chinese Physics Letters 20, 459.

    Google Scholar 

  • Kastrup, H. A. (1997). Canonical quantum statistical of an isolated Schwarzchild black hole with a spectrum. Physics Letters B 413, 267.

    CAS  Google Scholar 

  • Kempf, A., Mangano, G., and Mann, R. B. (1995). Hilbert space representation of the minimal length uncertainty relation. Physical Review D: Particles and Fields 52, 1108.

    CAS  Google Scholar 

  • Li, X. (2002a). Quantum gravity influences the black hole physics. Physics Letters B 537, 306.

    CAS  Google Scholar 

  • Li, X. (2002b). Black hole entropy without brick wall. Physics Letters B 540, 9.

    CAS  Google Scholar 

  • Li, X. and Zhao, Z. (2001a). Entropy of a Vaidya black hole. Physical Review D: Particles and Fields 62, 104001.

    Google Scholar 

  • Li, X. and Zhao, Z. (2001b). Black hole entropy: Membrane approach. International Journal of Theoretical Physics 40, 903.

    CAS  Google Scholar 

  • Liu, C. Z., Li, X., and Zhao, Z. (2003). Generalized uncertainty principle influences the entropy of a nonstationary Black Hole. International Journal of Theoretical Physics 42, 2081.

    MathSciNet  Google Scholar 

  • Liu, W. B. and Zhao, Z. (2001). An improved thin film brick-wall model of black hole entropy. Chinese Physics Letters 18, 310.

    Google Scholar 

  • Mukohyama, S. and Israel, W. (1998). Black holes, brick-walls and the Boulware state. Physical Review D: Particles and Fields 58, 104005.

    Google Scholar 

  • Rama, S. K. (2001). Some consequences of the generalized uncertainty principle: Statistical mechanical, cosmological, and varging speed of light. Physics Letters B 519, 103.

    Google Scholar 

  • Susskind, L. (1995). The world as a hologram. Journal of Mathmatics Physics 36, 6377.

    Google Scholar 

  • Sun, X. F. and Liu, W. B. (2004). Improved black hole entropy calculation without cutoff. Modern Physics Letters A 19, 1.

    Google Scholar 

  • ‘t Hooft, G. (1985). On the quantum structure of a black hole. Nuclear Physics B 256, 727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Zhou Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CZ. Black Hole Entropies of the Thin Film Model and the Membrane Model Without Cutoffs. Int J Theor Phys 44, 567–579 (2005). https://doi.org/10.1007/s10773-005-3983-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-3983-8

Keywords

Navigation