Skip to main content
Log in

D = 5, N = 2 Geometric Higher Curvature Supergravity in the Second-Order Canonical Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The supersymmetric extension of the five-dimensional Chern–Simons gravity is studied from the Hamiltonian point of view. This model containing the Gauss–Bonnet term quadratic in the Riemann curvature is the gauge theory of the supergroup SU(2,2/1). In the first order, the theory has a polynomial structure, but the second-order leads to a nonpolynomial structure for both the Hamiltonian and the supersymmetry transformation rules of the fields. The second-order theory has the advantage that the apparent gauge degrees of freedom are unambiguously removed leaving only the physical ones. This important feature is analyzed by constructing the second-order Hamiltonian theory. The gauge invariances of the model and the generator of time evolution are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Castellani, L., D’Auria, R., and Fré, P. (1983). Supersymmetry and Supergravity, Proceeding of the XIXth Winter School and Workshop of Theoretical Physics, B. Milewski, ed., World Scientific, Singapore.

  • Castellani, L., van Nieuwenhuizen, P., and Pilati, M. (1982). Physical Review D26, 352.

    Google Scholar 

  • D’Auria, R. D., Fré, P., Maina, E., and Regge, T. (1981). Annals of Physics, (NY) 135, 237.

    Google Scholar 

  • D’Auria, R. D., Fré, P., Maina, E., and Regge, T. (1982) Annals of Physics, (NY) 139, 93.

    Google Scholar 

  • Deser, S. and Isham, C. J. (1976). Physical Review D14, 2505.

    Google Scholar 

  • Dirac, P. A. M. (1962). Recent Developments in General Relativity, Pergamon, New York.

    Google Scholar 

  • Ferrara, S., Fré, P., and Porrati, M. (1987). Annals of Physics(NY) 175, 112.

    CAS  Google Scholar 

  • Foussats, A. and Zandron, O. (1989). Classical Quantum Gravity 6, 1165.

    CAS  Google Scholar 

  • Foussats, A. and Zandron, O. (1990). International Journal of Modern Physics A 5, 725.

    Google Scholar 

  • Foussats, A., Repetto, C., Zandron, O. P., and Zandron, O. S. (1992). Annalen der Physik 1, 505.

    Google Scholar 

  • Kentwell, G. W. (1988). Jornal of Mathematical Physics 29, 46.

    Google Scholar 

  • Kersten, P. H. M. (1988). Physics Letters A134, 25.

    Google Scholar 

  • Macías, A. and Lozano, E. (2001). Modern Physics Letters A38, 2421.

    Google Scholar 

  • Nelson, E. and Teitelboim, C. (1977). Physics Letters B69, 81.

    Google Scholar 

  • Nelson, E. and Teitelboim, C. (1978). Annals of Physics (NY) 116, 1.

    Google Scholar 

  • Nelson, J. E. and Regge, T. (1986). Annals of Physics (NY) 166, 234.

    CAS  Google Scholar 

  • Nesterenko, V. V. (1989). Journal of Physics A: Mathematics and General 22, 1673.

    Google Scholar 

  • Nesterenko, V. V. and Nguyen, S. H. (1988). International Journal of Modern Physics A3, 2315.

    Google Scholar 

  • Pilati, M. (1978). Nuclear Physics B132, 138.

    Google Scholar 

  • Seahra, S. S. and Wesson, P. S. (2003). Classical Quantum Gravity 20, 1321.

    Google Scholar 

  • Teitelboim, C. (1977). Physical Review Letters. 38, 1106.

    Google Scholar 

  • Zandron, O. (2003a). Interantional Journal of Theoretical Physics 42, 2705, and bibliography quoted therein.

  • Zandron, O. (2003b). Interantional Journal of Theoretical Physics 42, 2913.

    Google Scholar 

  • Zi-ping, L. I. (1990). Interantional Journal of Theoretical Physics 29, 165.

    Google Scholar 

  • Zi-ping, L. I. (1991a). Interantional Journal of Theoretical Physics 30, 225.

    Google Scholar 

  • Zi-ping, L. I. (1991b). Journal of Physics A: Mathematics and General 24, 4261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Zandron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandron, O.S. D = 5, N = 2 Geometric Higher Curvature Supergravity in the Second-Order Canonical Theory. Int J Theor Phys 44, 549–566 (2005). https://doi.org/10.1007/s10773-005-3982-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-3982-9

Keywords

Navigation