Skip to main content
Log in

Inverse Variational Problem for Nonlinear Evolution Equations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Helmholtz solution of the inverse problem for the variational calculus is used to study the analytic or Lagrangian structure of a number of nonlinear evolution equations. The quasilinear equations in the KdV hierarchy constitute a Lagrangian system. On the other hand, evolution equations with nonlinear dispersive terms (FNE) are non-Lagrangian. However, the method of Helmholtz can be judiciously exploited to construct Lagrangian system of such equations. In all cases the derived Lagrangians are gauge equivalent to those obtained earlier by the use of Hamilton’s variational principle supplemented by the methodology of integer-programming problem. The free Hamiltonian densities associated with the so-called gauge equivalent Lagrangians yield the equation of motion via a new canonical equation similar to that of Zakharov, Faddeev and Gardner. It is demonstrated that the Lagrangian system of FNE equations supports compacton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanchard, Ph. and Bruning, E. (1992). Variational Methods in Mathematical Physics, Springer-Verlag, NY.

  • Calogero, F. (1982). Spectral Transform and Solitons, Vol I, North-Holland Pub. Co., NY.

  • Cooper, F., Hyman, J. M., and Khare, A. (2001). Physical Review E 64, 026608.

    Article  CAS  Google Scholar 

  • Cooper, F., Shepard, H., and Sodano, P. (1993). Physical Review E 48, 4027.

    Article  Google Scholar 

  • Currie, D. J. and Saletan, E. J. (1966). Journal of Mathematical Physics 7, 967.

    Article  Google Scholar 

  • Dey, B. and Khare, A. (2000). Journal of Physics A 33, 5335.

    Google Scholar 

  • Dirac, P. A. M. (1964). Lectures on Quantum Mechanics, Belfer Graduate School Monograph Series No. 2, Yeshiva University, NY.

    Google Scholar 

  • Gardner, C. S. (1971). J. Math. Phys. 12, 1548.

    Article  Google Scholar 

  • Ghosh, S., Talukdar, B., and Shamanna, J. (2003). Czechoslovak Journal of Physics 53, 425.

    Article  Google Scholar 

  • Lax, P. D. (1968). Communications on Pure and Applied Mathematics 21, 467.

    Google Scholar 

  • Olver, P. J. (1993). Applications of Lie Groups to Differential Equations, Springer-Verlag, NY.

    Google Scholar 

  • Olver, P. J. and Rosenau, P. (1996). Physical Review E 53, 1900.

    Article  CAS  Google Scholar 

  • Rosenau, P. (1997). Physics Letters A 230, 305.

    Article  CAS  Google Scholar 

  • Rosenau, P. (1999). Physics Letters A 252, 297.

    Article  CAS  MathSciNet  Google Scholar 

  • Rosenau, P. and Hyman, J. M. (1993). Physical Review Letters 70, 564.

    Article  PubMed  Google Scholar 

  • Santili, R. M. (1984). Foundations of Theoretical Mechanics I, Springer-Verlag, NY.

    Google Scholar 

  • Sudarshan, E. C. G. and Mukanda, N. (1974). Classical Dynamics: A Modern Perspective, John Wiley and Sons, NY.

    Google Scholar 

  • Talukdar, B., Ghosh, S., Shamanna, J., and Sarkar, P. (2002). European Physical Journal D 21, 105.

    CAS  Google Scholar 

  • Talukdar, B., Shamanna, J., and Ghosh, S. (2003). Pramana—Journal of Physics 61, 99.

    Google Scholar 

  • Wolfram, S. (2000). Mathematica: A system for doing mathematics by computer, Version 4.1, Wolfram Research Inc., NY.

    Google Scholar 

  • Zakharov, V. E. and Faddeev, L. D. (1971). Functional Analysis and Application 5, 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Talukdar.

Additional information

PACS: 47.20.Ky; 42.81.Dp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Das, U. & Talukdar, B. Inverse Variational Problem for Nonlinear Evolution Equations. Int J Theor Phys 44, 363–373 (2005). https://doi.org/10.1007/s10773-005-3645-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-3645-x

Keywords

Navigation