Skip to main content
Log in

Kochen–Specker Theorem for von Neumann Algebras

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Kochen–Specker theorem has been discussed intensely ever since its original proof in 1967. It is one of the central no-go theorems of quantum theory, showing the non-existence of a certain kind of hidden states models. In this paper, we first offer a new, non-combinatorial proof for quantum systems with a type I n factor as algebra of observables, including I. Afterwards, we give a proof of the Kochen–Specker theorem for an arbitrary von Neumann algebra \({\cal R}\) without summands of types I1 and I2, using a known result on two-valued measures on the projection lattice \({\cal{P(R)}}\). Some connections with presheaf formulations as proposed by Isham and Butterfield are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnes, J. F. (1969). Physical states on a C-algebra. Acta Mathematica 122, 161–172.

    Google Scholar 

  • Aarnes, J. F. (1970). Quasi-states on C-algebras. Transactions of American Mathematical Society 149, 601–625.

    Google Scholar 

  • Bell, J. S. (1966). On the Problem of Hidden Variables in Quantum Mechanics. Reviews of Modern Physics 38, 447–452.

    CAS  Google Scholar 

  • Christensen, E. (1982). Measures on projections and physical states. Communications in Mathematical Physics 86, 529–538.

    Google Scholar 

  • Christensen, E. (1985). Comments to my paper: Measures on projections and physical states, (unpublished).

  • de Groote, H. F. (2001). Quantum Sheaves, preprint, http://de.arxiv.org/abs/math-ph/0110035.

  • Fine, A. (1974). On the Completeness of Quantum Theory. Synthese 29, 257–289.

    Google Scholar 

  • Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics 6, 885–893.

    Google Scholar 

  • Gunson, J. (1972). Physical states on quantum logics. I. Annales de l Institut Henri Poincaré, Section B: Calcul des Probabilities es Statistique A 17, 295–311

    Google Scholar 

  • Hamhalter, J. (1993). Pure Jauch-Piron states on von Neumann algebras, Annales de l Institut Henri Poincaré, Section B: Calcul des Probabilities es Statistique 58(2), 173–187.

    Google Scholar 

  • Hamhalter, J. (2003). Quantum Measure Theory, Kluwer Acedemic Publishers, Dordrecht, Boston, London.

    Google Scholar 

  • Hamhalter, J. (2004). Traces, dispersions of states and hidden variables. Foundations of Physics Letters 17(6), 581–597.

    MathSciNet  Google Scholar 

  • Hamilton, J., Isham, C. J. and Butterfield, J. (2000). A topos perspective on the Kochen–Specker theorem: III. Von Neumann algebras as the base category. International Journal of Theoretical Physics 39, 1413–1436.

    Google Scholar 

  • Isham, C. J. and Butterfield, J. (1998). A topos perspective on the Kochen–Specker theorem: I. Quantum states as generalised valuations. International Journal of Theoretical Physics 37, 2669–2733.

    Google Scholar 

  • Isham, C. J. and Butterfield, J. (1999). A topos perspective on the Kochen–Specker theorem: II. Conceptual aspects, and classical analogues. International Journal of Theoretical Physics 38, 827–859.

    Google Scholar 

  • Isham, C. J. and Butterfield, J. (2002). A topos perspective on the Kochen–Specker theorem: IV. Interval valuations. International Journal of Theoretical Physics 41(4), 613–639.

    Google Scholar 

  • Kadison, R. V. and Ringrose, J. R. (1997). Fundamentals of the Theory of Operator Algebras I, AMS, Providence, Rhode Island. Kadison, R. V., and Ringrose, J. R. (1997). Fundamentals of the Theory of Operator Algebras II, AMS, Providence, Rhode Island.

  • Kochen, S. and Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17 (1967), 59–87.

    Google Scholar 

  • Maeda, S. (1990). Probability measures on projections in von Neumann algebras. Review of Mathematical Physics 1(2), 235–290.

    Google Scholar 

  • Malley, J. D. (2004). All quantum observables in a hidden-variable model must commute simultaneously. Physics Review A 69, 022118.

    Google Scholar 

  • Peres, A. (1993). Quantum Theory: Concepts and Methods Kluwer, Dordrecht, Boston, London.

    Google Scholar 

  • Redhead, M. (1987). Incompleteness, Nonlocality and Realism, Clarendon, Oxford.

    Google Scholar 

  • Saito, K. (1985). Diagonalizing normal operators in properly infinite von Neumann algebras and the continuity of probability measures (unpublished).

  • Takesaki, M. (1979). Theory of Operator Algebras I, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Yeadon, F. J. (1983). Measures on projections in W-algebras of type II1. Bulletin of London Mathematical Society 15, 139–145.

    Google Scholar 

  • Yeadon, F. J. (1984). Finitely additive measures on projections in finite W-algebras. Bulletin of London Mathematical Society 16, 145–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Döring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Döring, A. Kochen–Specker Theorem for von Neumann Algebras. Int J Theor Phys 44, 139–160 (2005). https://doi.org/10.1007/s10773-005-1490-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-1490-6

Key Words

Navigation