Skip to main content
Log in

New and robust composite micro structure descriptor (CMSD) for CBIR

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Recover accurate images from larger database with an efficient way is nearly essential in CBIR. Create a new method to improve the accuracy in CBIR with the combination MTH (Multi Texton Histogram) and MSD (Micro Structure Descriptor). It is called Composite Micro Structure Descriptor (CMSD). The planned CBIR algorithm is developed based on different image feature characteristic and structure, also emulating the procedure of graphical substantial transmission and representation in upper-level sympathetic, with the aid of the future graphic improvement for property union. We have used four different kind of data sets to evaluate the performances of new method. Out new designed method outperforms compared with other CBIR methods such as MTH and MSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bella, M., & Vasuki, A. (2019). An efficient image retrieval framework using fused information feature. Journal of Computers & Electrical Engineering,75, 46–60.

    Google Scholar 

  • Chen, W. T., Liu, W. C., Chen, M. S., et al. (2010). Adaptive color feature extraction based on image color distributions. IEEE Transactions on Image Processing,19(8), 2005–2016.

    MathSciNet  MATH  Google Scholar 

  • Cross, G., & Jain, A. (1983). Markov random field texture models. IEEE Transactions on Pattern Analysis and Machine Intelligence,5(1), 25–39.

    Google Scholar 

  • Haralick, R. M., & Shangmugam, D. (1973). Textural feature for image classification. IEEE Transactions on Systems Man, and Cybernetics,3(6), 610–621.

    Google Scholar 

  • Hsiao, M. J., Huang, Y. P., Tsai, T., Chiang, T. W., et al. (2010). An efficient and flexible matching strategy for content-based image retrieval. Journal of Life Science,7(1), 99–106.

    Google Scholar 

  • Jones, S., & Shao, L. (2013). Content-based retrieval of human actions from realistic video databases. Information Science,236, 56–65.

    Google Scholar 

  • Julesz, B. (1981). Textons, the elements of texture perception and their interactions. Nature,290, 91–97.

    Google Scholar 

  • Lin, C. H., Huang, D. C., Chan, Y. K., Chen, K. H., Chang, Y. J., et al. (2011). Fast color-spatial feature based image retrieval methods. Journal of Expert System Application,38(9), 11412–11420.

    Google Scholar 

  • Liu, G. H., Li, Z. Y., Zhang, L., Xu, Y., et al. (2011). Image retrieval based on micro-structure descriptor. Journal of Pattern Recognition,44(9), 2123–2133.

    Google Scholar 

  • Liu, G. H., & Yang, J. Y. (2008). Image retrieval based on the texton co-occurrence matrix. International Journal of Pattern Recognition,41(12), 3521–3527.

    MATH  Google Scholar 

  • Liu, G. H., & Yang, J. Y. (2013). Content-based image retrieval using color deference histogram. International Journal of Pattern Recognition,46(1), 188–198.

    Google Scholar 

  • Liu, G. H., & Zhang, L. (2010). Image retrieval based on multi-texton histogram. International Journal of Pattern Recognition,43(7), 2380–2389.

    MATH  Google Scholar 

  • Low, D. G. (2004). Distinctive image features from scale-invariant key points. International Journal of Computer Vision,60(2), 91–110.

    Google Scholar 

  • Luo, J., & Crandall, D. (2006). Color object detection using spatial-color joint probability functions. IEEE Transactions on Image Processing,15(6), 1443–1453.

    Google Scholar 

  • Manjunathi, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence,18(8), 837–842.

    Google Scholar 

  • Ojala, T., Pietikanen, M., Maenpaa, T., et al. (2002). Multi-resolution gray-scale and rotation minvariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,24(7), 971–987.

    Google Scholar 

  • Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision,42(3), 145–175.

    MATH  Google Scholar 

  • Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C., et al. (2012). Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Transactions on Image Processing,21(4), 1613–1623.

    MathSciNet  MATH  Google Scholar 

  • Shamna, P., Govindan, V. K., Abdul Nazeer, K. A., et al. (2019). Content based medical image retrieval using topic and location. Journal of Biomedical Informatics,91, 103112.

    Google Scholar 

  • Singh, N., Dubey, S. R., Dixit, P., & Gupta, J. P. (2012). Semantic image retrieval by combining color, texture and shape features. In International conference on computing sciences (pp. 116–20).

  • Su, Y., & Jure, F. (2012). Improving image classification using semantic attributes. International Journal of Computer Vision,100(1), 59–77.

    Google Scholar 

  • Tamura, H., Mori, S., Yamawaki, T., et al. (1978). Texture features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics,8(6), 460–473.

    Google Scholar 

  • Umamaheswaran, S., Suresh kumar, N., Ganesh, K., Rajendra Sethupathi, P. V., Anbuudayasankar, S. P., et al. (2015). Variants, meta-heuristic solution approaches and applications for image retrieval in business-comprehensive review and framework. International Journal of Business Information systems,18(2), 160–197.

    Google Scholar 

  • Wang, X. Y., Yang, H. Y., Li, D. M., et al. (2013). A new content-based image retrieval technique using color and texture information. Journal of Computer Electrical Engineering,39(3), 746–761.

    MathSciNet  Google Scholar 

  • Wang, X. Y., Yu, Y. J., Yang, H. Y., et al. (2011). An effective image retrieval scheme using color, texture & shape features. Journal of Computer Stand Interfaces,33(1), 59–68.

    Google Scholar 

  • Xingyuan, W., & Zongyu, W. (2013). A novel method for image retrieval based on structure elements descriptor. Journal of Visual Communication and Image Representation,24(1), 63–74.

    Google Scholar 

  • Zarchi, M. S., Monadjemi, A., Jamshidi, K. A., et al. (2014). Semantic model for general purpose content-based image retrieval systems. Journal of Computer and Electrical Engineering,40(7), 2062–2071.

    Google Scholar 

  • Zhang, D. S., Islam, M. M., Lu, G. J., et al. (2012). A review on automatic image annotation techniques. Journal of Pattern Recognition,45(1), 346–362.

    Google Scholar 

  • Zhang, H., Zhang, T., Pedrycz, W., Zhao, C., Miao, D., et al. (2019). Improved adaptive image retrieval with the use of shadowed sets. Pattern Recognition,90, 390–403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Umamaheswaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umamaheswaran, S., Lakshmanan, R., Vinothkumar, V. et al. New and robust composite micro structure descriptor (CMSD) for CBIR. Int J Speech Technol 23, 243–249 (2020). https://doi.org/10.1007/s10772-019-09663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-019-09663-0

Keywords

Navigation