Skip to main content
Log in

Gain optimization for millimeter wave reflectarray antennas based on a phase gradient approach

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

This paper is concerned with reflectarray antenna design with multiple unit cells in order to enhance the gain at the design frequency, while keeping an acceptable bandwidth to work for 5-G mobile base station applications. The design is based on five unit cells. The design begins with an investigation of the phase responses of all unit cells. It is required to choose a unit cell that can span 360° with linear characteristics. Unfortunately, none of the unit cells has perfectly linear phase characteristics. Each of them has a limited linear phase region. The proposed reflectarray design method selects the most linear region from each phase curve for selecting the appropriate unit cell with the appropriate size for each required phase using a phase gradient approach. With this approach, piece-wise linear phase characteristics are adopted for the design of the reflectarray to enhance the gain at the design frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For CST (Computer Simulation Technology) Documentation, see http://www.cst.com.

References

  • Alvarez, J., Arrebola, M., Ayestaran, R. G., & Las-Heras, F. (2012). Systematic framework for reflectarray synthesis based on phase optimization. International Journal of Antennas and Propagation. https://doi.org/10.1155/2012/474073.

    Google Scholar 

  • Chen, X., Chen, Q., Feng, P., & Huang, K. (2016). Efficient design of the microstrip reflectarray antenna by optimizing the reflection phase curve. International Journal of Antennas and Propagation. https://doi.org/10.1155/2016/8764967.

    Google Scholar 

  • Chou, H.-T., Liu, Y.-X., Dong, X.-Y., You, B.-Q., & Kuo, L.-R. (2015). Design of reflectarray antennas to achieve an optimum near-field radiation for RFID applications via the implementation of SDM procedure. Radio Science. https://doi.org/10.1002/2014RS005593.

    Google Scholar 

  • Dahri, M. H., Jamaluddin, M. H., Abbasi, M. I., & Kamarudin, M. R. (2017). A review of wideband reflectarray antennas for 5G communication systems. IEEE Access, 5, 17803–17815.

    Article  Google Scholar 

  • Daniel, R., Prado, M., Arrebola, M. R., Pino, & Las-Heras, F. (2017). Improved reflectarray phase-only synthesis using the generalized intersection approach with dielectric frame and first principle of equivalence. International Journal of Antennas and Propagation. https://doi.org/10.1155/2017/3829390.

    Google Scholar 

  • Elsharkawy, R., Sebak, A.-R., Hindy, M., Haraz, O. M., Saleeb, A., & El-Rabaie, E. M. (2015a). Polarization insensitive Ka-band reflectarray antenna. In The proceedings of the AP-S, pp. 2483–2484.

  • Elsharkawy, R., Sebak, A.-R., Hindy, M., Haraz, O. M., Saleeb, A., & El-Rabaie, E. M. (2015b). Single layer polarization independent reflectarray antenna for future 5-G cellular applications. In Proceedings of International Conference on Information and Communication Technology Research, pp. 9–12

  • Elsharkawy, R. R., Hindy, M., Saleeb, A. A. & El-Rabaie, E. M. (2017). A Reflectarray with octagonal unit cells for 5-G applications. Wireless Personal Communication, 97(2), 2999–3016.

    Article  Google Scholar 

  • Guha, D. & Antar, Y. (2011). Microstrip and printed antennas new trends, techniques and applications. Hoboken: Wiley.

    Google Scholar 

  • Hong, W., Jiang, Z. H., Yu, C., Zhou, J., Chen, P., Yu, Z., et al. (2017). Multibeam antenna technologies for 5G wireless communications. IEEE Transactions on Antennas and Propagation, 65(12), 6231–6249.

    Article  Google Scholar 

  • Huang, J., & Encinar, J. A. (2008). Reflectarray antennas. Hoboken: Wiley.

    Google Scholar 

  • Kurup, D. G., Himdi, M., & Rydberg, A. (2003). Design of an unequally spaced reflectarray. IEEE Antennas and Wireless Propagation Letters, 2, 33–35.

    Article  Google Scholar 

  • Nayeri, P., Yang, F., & Elsherbeni, A. Z. (2012). Design and experiment of a single-feed quad-beam reflectarray antenna. IEEE Transactions on Antennas and Propagations, 60(2), 1166–1171.

    Article  Google Scholar 

  • Nayeri, P., Yang, F., & Elsherbeni, A. Z. (2013). Design of single-feed reflectarray antennas with asymmetric multiple beams using the particle swarm optimization method. IEEE Transactions on Antennas and Propagations, 61(9), 4598–4605.

    Article  Google Scholar 

  • Zhang, S. (2017). Three-dimensional printed millimetre wave dielectric resonator reflectarray. IET Microwaves, Antennas & Propagation, 11(14), 2005–2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Elsharkawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsharkawy, R., Hindy, M., Sebak, AR. et al. Gain optimization for millimeter wave reflectarray antennas based on a phase gradient approach. Int J Speech Technol 21, 555–562 (2018). https://doi.org/10.1007/s10772-018-9507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-018-9507-8

Keywords

Navigation