Skip to main content

Effect of bandwidth modifications on the quality of speech imitated by Alexandrine and Indian Ringneck parrots

Abstract

Alexandrine and Indian Ringneck parrots are known for imitating the voice of other animals. The objective of this paper is to estimate the spectral limits of the imitated sounds produced by parrots and quantify the quality. The investigations showed that 500–3000 Hz spectral band is adequate for retaining the important perceptual information in the phrases uttered by human speakers and imitated by parrots. Investigations confirmed that the Indian Ringneck parrots are capable of following the formant structure and pitch contour of the phrases uttered by the human subjects. The dynamic range of the pitch of Indian Ringneck parrots was observed as higher than that of the human subjects. A rise of about 1000 Hz in the formant F1 of the parrots was observed, indicating the tongue height small and beak opening, relatively large, as compared to that of human subjects. The quality of some of the synthesized and processed phrases was found slightly better as compared to that of the original phrases because of the inherent enhancement capability of the Harmonic plus noise model (HNM). The average Mean opinion score (MOS) score of the Indian Ringnech parrots for the original, synthesized, and processed phrases was observed as 2.65, 2.59, and 2.77, respectively. The investigations may be beneficial for studying the behavior of endangered birds, defense related activities, safeguarding the crashes with aero planes, and safeguard of the birds from wind power generator etc.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Ali, S. (1943). The book of Indian birds. Bombay: The Bombay Natural History Society.

    Google Scholar 

  • Beckers, G. J. L. (2011). Bird speech perception and vocal production: A comparison with humans. Human Biology; an International Record of Research, 83, 191–212.

    Google Scholar 

  • Beckers, G. J. L., Nelson, B. S., & Suthers, R. A. (2004). Vocal-tract filtering by lingual articulation in a parrot. Current Biology, 14, 1592–1597.

    Article  Google Scholar 

  • Berouti, M., Schwartz, R., & Makhoul, J. (1979). Enhancement of speech corrupted by acoustic noise. In Acoustics, speech, and signal processing, IEEE international conference on ICASSP’ (vol. 79(4), pp. 208–211).

  • Boll, S. (1979). Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions Acoustics, Speech and Signal Processing, 27(2), 113–120.

    Article  Google Scholar 

  • Cai, J., Ee, D., Pham, B., Roe, P., & Zhang, J. (2007). Sensor network for the monitoring of ecosystem: Bird species recognition. In Proceedings of the 3rd IEEE international conference on intelligent sensors, sensor networks and information (ISSNIP’07) (pp. 293–298). Melbourne: ISSNIP.

    Chapter  Google Scholar 

  • Catchpole, C. K., & Slater, P. J. B. (2008). Bird song: Biological themes and variations. Cambridge: Cambridge Press University.

    Book  Google Scholar 

  • Chou, C.-H., & Liu, P.-H. (2009). Bird species recognition by wavelet transformation of a section of birdsong. In Proceedings IEEE symposia and workshops on ubiquitous, autonomic and trusted computing. (pp. 189–193). Brisbane: IEEE.

    Chapter  Google Scholar 

  • Chu, W., & Alwan, A. (2012). FBEM: A filter bank EM algorithm for the joint optimization of features and acoustic model parameters in bird call classification. In Proceedings IEEE international conference acoustics, speech, signal processing (ICASSP) (pp. 1993–1996). Kyoto: ICASSP.

    Google Scholar 

  • Chu, W., & Blumstein, D. T. (2011). Noise robust bird song detection using syllable pattern-based Hidden Markov models. In Proceedings international conference on acoustics, speech, signal processing (pp. 345–348). Prague: ICASSP.

    Google Scholar 

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567–631.

    Article  Google Scholar 

  • Fagerlund, S. (2007). Bird species recognition using support vector machines. EUSASIP Journal on Advances in Signal Processing, 2007, 1–8.

    MATH  Google Scholar 

  • Fitch, W. T. (2005). The evolution of language: A comparative review. Biology and Philosophy, 20, 193–230. doi:10.1007/s10539-005-5597-1.

    Article  Google Scholar 

  • Forshaw, J. M. (2006). Parrots of the world: An identification Guide. Princeton: Princeton University Press.

    Google Scholar 

  • Ganchev, T., Lazaridis, A., Mporas, I., & Fakotakis, N. (2008). Performance evaluation for voice conversion systems. Berlin: Springer.

    Book  Google Scholar 

  • Härmä, A., & Somervuo, P. (2004). Classification of the harmonic structure in bird vocalization. In Proceedings IEEE international conference acoustics, speech, and signal processing (ICASSP ‘04) (pp. 701–704). Montreal, QC: ICASSP.

    Google Scholar 

  • Homberger, D. G. (1986). The lingual apparatus of the African grey parrot, Psittacus erithacus Linne (Aves: Psittacidae): Description and theoretical mechanical analysis. Ornithology Monographs, 39, 1–233.

    Google Scholar 

  • ITU-T. (1996). Methods for subjective determination of transmission quality. Tech. Rep. ITU-T Recommendation P.800, ITU.

  • ITU-T Rec. P. 862. (2001). Perceptual evaluation of speech quality (PESQ), an objective method for end-to-end speech quality assessment of narrow band telephone networks and speech codecs

  • Kamath, S. D., & Loizou, P. C. (2002). A multi-band spectral subtraction method for enhancing speech corrupted by colored noise. In Proceedings IEEE international conference acoustics, speech, and signal processing (pp. 4160–4164). Orlando: ICASSP.

    Google Scholar 

  • King, A. S. (1989). Functional anatomy of the syrinx, in Form and Function in Birds. ed. by A.S. King, J. McLelland. London: Academic Press.

    Google Scholar 

  • Ladefoged, P. A. (2001). A course in phonetics (4th edn.). Fort Worth: Harcourt College Publishers.

    Google Scholar 

  • Laroche, J., Stylianou, Y., & Moulines, E. (1993a). HNM: A simple, efficient harmonic plus noise model for speech. In Proceeding IEEE workshop applications signal processing to audio and acoustics (pp. 169–172).New Paltz, NY: WASPAA

    Chapter  Google Scholar 

  • Laroche, J., Stylianou, Y., & Moulines, E. (1993b). HNS: Speech modification based on a harmonic + noise model. In Proceedings international conference on acoustics, speech, and signal processing (pp. 550–553). Minneapolis, MN: ICASSP

    Google Scholar 

  • Larsen, O. N., & Goller, F. (2002). Direct observation of syringeal muscle function in songbirds and a parrot. The Journal of Experimental Biology, 205, 25–35.

    Google Scholar 

  • Lehana, P. K. (2013). Spectral mapping using multivariate polynomial modelling for voice conversion. Ph.D. thesis, Electrical Engineering, IIT Bombay.

  • Lehana, P. K., Gupta, R. K., & Kumari, S. (2004). Enhancement of esophagus speech using harmonic plus noise modal. In Proceedings TENCON 2004. 2004 IEEE region 10 conference (pp. 669–672).

  • Leiliany, N. M., Maria, L. S., Marilice, M. F. G., Angélica, L. F. R., Adrine, C. S., & Ivete, F. R. (2014). Gestural communication in a new world parrot. Behavioural Processes, 105, 46–48.

    Article  Google Scholar 

  • McAulay, R. J., & Quatieri, T. F. (1986). Speech analysis/synthesis based on a sinusoidal representation. IEEE Transactions on Acoust, Speech, Signal Processing, 34(4), 744–754.

    Article  Google Scholar 

  • McIlraith, A. L., & Card, H. C. (1997). Birdsong recognition using backpropagation and multivariate statistics. IEEE Transactions on Signal Processing, 45(11), 2740–2748.

    Article  Google Scholar 

  • Nelson, B. S., Beckers, G. J. L., & Suthers, R. A. (2005). Vocal tract filtering and sound radiation in a songbird. The Journal of Experimental Biology, 208, 297–308.

    Article  Google Scholar 

  • Nottebohm, F. (1976). Phonation in the orange-winged Amazon parrot, Amazona amazonica. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 108, 157–170.

    Article  Google Scholar 

  • Nowicki, S. (1987). Vocal tract resonances in oscine bird sound production: Evidence from birdsongs in a helium atmosphere. Nature, 325, 53–55.

    Article  Google Scholar 

  • Ohms, V. R., Beckers, G. J. L., ten Cate, C., & Suthers, R. A. (2012). Vocal tract articulation revisited: The case of the monk parakeet. The Journal of Experimental Biology, 215, 85–92.

    Article  Google Scholar 

  • Ohms, V. R., Escudero, P., Lammers, K., & ten Cate, C. (2011). Zebra finches and Dutch adults exhibit the same cue weighting bias in vowel perception. Animal Cognition, 15, 155–161.

    Article  Google Scholar 

  • Pantazis, Y., & Stylianou, Y. (2008). Improving the modeling of the noise part in the harmonic plus noise model of speech. In Proceedings IEEE international conference acoustics, speech, and signal processing (ICASSP) (pp. 4609–4612). Las Vegas: ICASSP.

    Google Scholar 

  • Patterson, D. K., & Pepperberg, I. M. (1994). A comparative study of human and parrot phonation: Acoustic and articulatory correlates of vowels. The Journal of the Acoustical Society of America, 96(2), 634–648.

    Article  Google Scholar 

  • Pepperberg, I. M. (1994). Vocal learning in Grey parrots (Psittacus erithacus): Effect of social interaction reference and context. The Auk, 111, 300–313.

    Article  Google Scholar 

  • Shuang, Z., Meng, F., & Qin, Y. (2008). Voice conversion by combining frequency warping with unit selection. In Proceedings IEEE international conference acoustics, speech, and signal processing (pp. 4661–4664). Las Vegas: ICASSP

    Google Scholar 

  • Singh, R., Kumar, A., & Lehana, P. (2017). Investigations of the quality of speech imitated by Alexandrine parrot (Psittacula eupatria). Circuits, Systems, and Signal Processing, 36, 2292–2314. doi:10.1007/s00034-016-0395-3.

    MathSciNet  Article  Google Scholar 

  • Stylianou, Y. (2001). Applying the harmonic plus noise model in concatenative speech synthesis. IEEE Transactions on Speech and Audio Processing, 9(1), 21–29.

    Article  Google Scholar 

  • Suthers, R. A., & Zollinger, S. A. (2004). Producing song: The vocal apparatus. Annals of the New York Academy of Sciences, 1016, 109–129.

    Article  Google Scholar 

  • Warren, D. K., Patterson, D. K., & Pepperberg, I. M. (1996). Mechanisms of American English vowel production in a grey parrot (Psittacus erithacus). The Auk, 113, 41–58.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to I. K. Gujral Punjab Technical University, Kapurthala, Punjab, for providing the guidance and the platform for the completion of this research work and also thankful to Sri Sai College of Engineering and Technology, Badhani, Beant College of Engineering and Technology, Gurdaspur, and DSP Lab, University of Jammu for providing resources for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randhir Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Kumar, A. & Lehana, P.K. Effect of bandwidth modifications on the quality of speech imitated by Alexandrine and Indian Ringneck parrots. Int J Speech Technol 20, 659–672 (2017). https://doi.org/10.1007/s10772-017-9437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-017-9437-x

Keywords

  • Background noise
  • HNM
  • MOS
  • Perceptual evaluation of speech quality (PESQ)
  • Speech enhancement