Skip to main content
Log in

Wavelet-scalogram based study of non-periodicity in speech signals as a complementary measure of chaotic content

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

In recent studies, the chaotic behavior of a signal is confirmed using scalogram analysis of continuous-wavelet transform. Chaotic component of a speech signal can be verified through scalogram analysis, since, it investigates the periodicity content of a signal. The periodicity analysis helps in proving that a signal is not periodic, which is an essential condition on chaotic activity. In this work, a scale-index based on scalogram-analysis is calculated for a set of recordings of Arabic vowels. Also, Largest-Lyapunov Exponents (LLE) are computed for these recordings. The obtained measures are, then, compared. The comparison proves the efficacy of scale index for confirming chaotic behavior even for highly-periodic waveforms which is the case in speech vowels. Additionally, it is noted that both LLE and scale-index exhibit classification ability for Arabic vowels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26, R155–R199.

    Article  Google Scholar 

  • Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205–211.

    Article  Google Scholar 

  • Benítez, R., Bolós, V. J., & Ramírez, M. E. (2010). A wavelet-based tool for studying non-periodicity. Computers and Mathematics with Applications, 60(3), 634–641.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantón, E. C., & Murguía, J. S. (2006). Wavelet analysis of chaotic time series. Revista Mexicana de Física, 52(2), 155–162.

    Google Scholar 

  • Chavan, M. S., Mastorakis, N., Chavan, M. N., & Gaikwad, M. S. (2011). Implementation of SYMLET wavelets to removal of Gaussian additive noise from speech signal. In Proceeding of 10th WSEAS international conference on signal processing, robotics and automation, Wisconsin, USA (pp. 37–41).

    Google Scholar 

  • Chen, G., Hsu, S., Huang, Y., & Roque-Sol, M. (2011). The spectrum of chaotic time series (II): wavelet analysis. International Journal of Bifurcation and Chaos, 21(5), 457–1467.

    MATH  Google Scholar 

  • Esposito, A., & Marinaro, M. (2005). Some notes on nonlinearities of speech. In Lecture notes in computer science: Vol. 3445. Nonlinear speech modeling and applications (pp. 1–14). Berlin: Springer.

    Chapter  Google Scholar 

  • Faúndez-Zanuy, M., McLaughlin, S., Esposito, A., Hussain, A., Schoentgen, J., Kubin, G., Kleijn, W. B., & Maragos, P. (2002). Non-linear speech processing: overview and applications. Control and Intelligent Systems, 30(1), 1–10.

    Google Scholar 

  • Hesham, M. (2006). A predefined wavelet packet for speech quality assessment. Journal of Engineering and Applied Sciences, 53(5), 637–652.

    Google Scholar 

  • Hou, Y. (2010). A compactly supported, symmetrical and quasi-orthogonal wavelet. International Journal of Wavelets, Multiresolution and Information Processing, 8(6), 931–940.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, J. J., Zhang, Y., & McGilligan, C. (2006). Chaos in voice, from modeling to measurement. Journal of Voice, 20(1), 2–17.

    Article  Google Scholar 

  • Kia, B., Ditto, W. L., & Spano, M. L. (2011). Chaos for speech coding and production. In C. M. Travieso-González & J. Hernández (Eds.), NOLISP (pp. 270–278). Berlin: Springer.

    Google Scholar 

  • Kokkinos, I., & Maragos, P. (2006). Nonlinear speech analysis using models for chaotic systems. IEEE Transactions on Speech and Audio Processing, 13(6), 1098–1109.

    Article  Google Scholar 

  • Lei, M., Wang, Z., & Feng, Z. (2002). The application of symplectic geometry on nonlinear dynamics analysis of the experimental data. In DSP 2002 (Vol. 2, pp. 1137–1140).

    Google Scholar 

  • Lin, J., Huang, Z., Wang, Y., & Zhenken, S. (2000). Selection of proper embedding dimension in phase space reconstruction of speech signals. J. of Electron., 17(2), 161–169.

    Google Scholar 

  • Liu, H. F., & Dai, Z. H. (2005). Noise robust estimates of the largest Lyapunov exponent. Physics Letters A, 341(1–4), 119–127.

    Article  MATH  Google Scholar 

  • Liu, X., Povinelli, R., & Johnson, M. (2003). Vowel classification by global dynamic modeling. In ISCA tutorial and research workshop on non-linear speech processing (NOLISP), Le Croisic, France.

    Google Scholar 

  • Long, Y., Gang, L., & Jun, G. (2004). Selection of the best wavelet base for speech signal. In Proceedings of 2004 international symposium onIntelligent multimedia, video and speech processing, 20–22 Oct. (pp. 218–221).

    Chapter  Google Scholar 

  • Mallat, S. (1999). A wavelet tour of signal processing. London: Academic Press.

    MATH  Google Scholar 

  • Maragos, P., Dimakis, A. G., & Kokkinos, I. (2002). Some advances in nonlinear speech modeling using modulations, fractals, and chaos. In DSP, 2002 (Vol. 1, pp. 325–332).

    Google Scholar 

  • Mohammadi, S. (2009). LYAPROSEN: MATLAB function to calculate Lyapunov exponent. Statistical software components T741502. http://ideas.repec.org/e/pmo194.html.

  • Ouahabi, A., & Femmam, S. (2011). Wavelet-based multifractal analysis of 1-D and 2-D signals: new results. Analog Integrated Circuits and Signal Processing, 69(1), 3–15.

    Article  Google Scholar 

  • Palus, M., & Dvorak, I. (1992). Singular-value decomposition in attractor reconstruction: pitfalls and precautions. Physica D, 55(1–2), 221–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Pitsikalis, V., & Maragos, P. (2002). Speech analysis and feature extraction using chaotic models. In ICASSP 2002 (pp. 533–536).

    Google Scholar 

  • Pitsikalis, V., & Maragos, P. (2006). Filtered dynamics and fractal dimensions for noisy speech recognition. IEEE Signal Processing Letters, 13(11), 711–714.

    Article  Google Scholar 

  • Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 65(1–2), 117–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Vaziri, G., Almasganj, F., & Behroozmand, R. (2010). Pathological assessment of patients’speech signals using nonlinear dynamical analysis. Computers in Biology and Medicine, 40, 54–63.

    Article  Google Scholar 

  • Watada, J., & Matsumoto, Y. (2007). Wavelet approach to chaotic forecasting of stock movement. Asia Pacific Journal of Finance and Banking Research, 1(1), 34–44.

    Google Scholar 

  • Wickerhauser, M. V. (1994). Adapted wavelet analysis from theory to software. New York: IEEE Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hesham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesham, M. Wavelet-scalogram based study of non-periodicity in speech signals as a complementary measure of chaotic content. Int J Speech Technol 16, 353–361 (2013). https://doi.org/10.1007/s10772-013-9187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-013-9187-3

Keywords

Navigation