Skip to main content
Log in

Experimental Measurements and Molecular Simulations on the Liquid Density and Viscosity of Pentaerythritol Tetraacetate

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Pentaerythritol tetraacetate (PEC2) and its homologs are widely used in many applications, like mechanical lubricants, engine oils, hydraulic oils, and plasticizers, which are a typical category of polyol ester (POE) lubricant base oils. This study employed a vibrating-wire apparatus to measure the liquid phase density and viscosity simultaneously. The measurements were taken covering a temperature range of (373.15–523.15) K under ambient conditions. The expanded relative measurement uncertainties (k = 2, level of confidence = 0.95) were determined to be 0.24% for density and 2.2% for viscosity over the entire measurement temperature range. The experimental density and viscosity data were correlated with the empirical correlations, and comparisons with literature data were made. Moreover, a thorough molecular dynamics (MD) simulations with the optimized potential for liquid simulations all-atom force field (OPLS and LOPLS FF) was conducted to figure out the transport properties and microscopic structures. The findings demonstrated that the LOPLS force field, when applied in the isobaric-isothermal (NpT) and canonical ensembles (NVT), effectively replicated the experimentally measured and semi-empirical models of the density, viscosity at the elevated temperatures. Moreover, the utilization of the radial distribution function and end-to-end distance distribution in the analysis of liquid conformations allowed for a comprehensive investigation of the microscopic structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. M.O. McLinden, J.S. Brown, R. Brignoli, A.F. Kazakov, P.A. Domanski, Nat. Commun. 8(1), 14476 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. K.N. Marsh, M.E. Kandil, Fluid Phase Equilib. 199(1), 319 (2002)

    Article  CAS  Google Scholar 

  3. V.V. Emel’ianov, E.L. Krasnykh, S.V. Portnova, S.V. Levanova, Fuel 312, 122908 (2022)

    Article  CAS  Google Scholar 

  4. H.K. Shobha, K. Kishore, J. Chem. Eng. Data 37(4), 371 (1992)

    Article  CAS  Google Scholar 

  5. K. Kishore, H.K. Shobha, J. Phys. Chem. 96(20), 8161 (1992)

    Article  CAS  Google Scholar 

  6. T. Yang, J.I. Siepmann, J. Wu, Ind. Eng. Chem. Res. 60(1), 739 (2021)

    Article  CAS  Google Scholar 

  7. T. Yang, J. Shen, C. Zhu, J. Wu, J. Mol. Liq. 375, 121283 (2023)

    Article  CAS  Google Scholar 

  8. T. Yang, J. Shen, J. Li, Z. Li, J. Chem. Eng. Data. accepted, (2023)

  9. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118(45), 11225 (1996)

    Article  CAS  Google Scholar 

  10. S.W.I. Siu, K. Pluhackova, R.A. Böckmann, J. Chem. Theory Comput. 8(4), 1459 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. K. Pluhackova, H. Morhenn, L. Lautner, W. Lohstroh, K.S. Nemkovski, T. Unruh, R.A. Böckmann, J. Phys. Chem. B 119(49), 15287 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. L. Lin, M.A. Kedzierski, Int. J. Refrig. 118, 188 (2020)

    Article  CAS  Google Scholar 

  13. F. Ciotta, J.P.M. Trusler, J. Chem. Eng. Data 55, 2195 (2010)

    Article  CAS  Google Scholar 

  14. T. Retsina, S.M. Richardson, W.A. Wakeham, Flow Turbul. Combust. 43, 127 (1986)

    CAS  Google Scholar 

  15. T. Retsina, S.M. Richardson, W.A. Wakeham, Flow Turbul. Combust. 43, 325 (1987)

    Google Scholar 

  16. A. Pádua, J. Fareleira, J. Calado, W. Wakeham, Int. J. Thermophys. 17(4), 781 (1996)

    Article  ADS  Google Scholar 

  17. X. Liang, J. Yang, X. Meng, J. Wu, Int. J. Thermophys. 44(4), 52 (2023)

    Article  ADS  CAS  Google Scholar 

  18. X. Liang, X. Meng, J. Yang, J. Wu, X. Zhang, Int. J. Thermophys. 44(11), 168 (2023)

    Article  ADS  CAS  Google Scholar 

  19. M. Mohammed, F. Ciotta, J.M. Trusler, J. Chem. Eng. Data 62(1), 422 (2017)

    Article  CAS  Google Scholar 

  20. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J. Berendsen, J. Comput. Chem. 26(16), 1701 (2005)

    Article  PubMed  Google Scholar 

  21. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1, 19 (2015)

    Article  ADS  Google Scholar 

  22. S. Nosé, J. Chem. Phys. 81(1), 511 (1984)

    Article  ADS  Google Scholar 

  23. W.G. Hoover, Phys. Rev. A 31(3), 1695 (1985)

    Article  ADS  CAS  Google Scholar 

  24. M. Parrinello, A. Rahman, J. Appl. Phys. 52(12), 7182 (1981)

    Article  ADS  CAS  Google Scholar 

  25. B. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, J. Comput. Chem. 18(12), 1463 (1997)

    Article  CAS  Google Scholar 

  26. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103(19), 8577 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Y. Zhang, A. Otani, E.J. Maginn, J. Chem. Theory Comput. 11(8), 3537 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. E.J. Maginn, R.A. Messerly, D.J. Carlson, D.R. Roe, J.R. Elliot, LiveCoMS 1(1), 6324 (2018)

    Google Scholar 

  29. R.A. Messerly, M.C. Anderson, S.M. Razavi, J.R. Elliott, Fluid Phase Equilib. 483, 101 (2019)

    Article  CAS  Google Scholar 

  30. T. Klein, F.D. Lenahan, M. Kerscher, M.H. Rausch, I.G. Economou, T.M. Koller, A.P. Fröba, J. Phys. Chem. B 124(20), 4146 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was primarily supported by the National Natural Science Foundation of China (Nos. 52206217 and U22B20112).

Author information

Authors and Affiliations

Authors

Contributions

TY conducted experimental measurements and molecular simulations and wrote the main manuscript text. XL contributed to experimental data analysis and made modifications to the manuscript. JS and JW proposed the research content and made modifications to the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jun Shen.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Shen, J., Liang, X. et al. Experimental Measurements and Molecular Simulations on the Liquid Density and Viscosity of Pentaerythritol Tetraacetate. Int J Thermophys 45, 21 (2024). https://doi.org/10.1007/s10765-023-03312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03312-0

Keywords

Navigation