Skip to main content
Log in

Thermal Conductivity of Gas Diffusion Layers of PEM Fuel Cells: Anisotropy and Effects of Structures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

When addressing the proton exchange membrane (PEM) fuel cells, effective water management is essential for the system to respond promptly to electric power demands. The local water vapor saturation pressure and interphase mass transfer are impacted by the temperature distribution inside the structure whereas the gas diffusion layer (GDL) is crucial in facilitating effective heat transfer during cell operation. This work is focused on obtaining a better understanding of the thermal conductivity (k) of the gas diffusion layer in two arrangements, single uncoated macro-porous layer GDL without polytetrafluoroethylene (PTFE), and as a coated double-layer consisting of GDL with 50 % PTFE and a micro-porous layer (MPL). The \(k\) in the in-plane and out-of-plane directions of the double-layer GDL improved by 50 % and 184 % in vacuum, respectively, compared with the case where it is uncoated and unsupported by MPL. Also, this study represents one of the first to investigate the k of double-layer GDL in the in-plane direction. Our out-of-plane k measurement in air and vacuum provides deep insight into the heat transfer mechanism of the porous GDL: the sample and pores inside it follow more parallel configurations than serial for the uncoated macro-porous layer sample, while quite serial configurations for the double-layer GDL sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Park, J.-W. Lee, B.N. Popov, Int. J. Hydrog. Energy 37, 5850 (2012)

    Article  Google Scholar 

  2. L. Cindrella, A.M. Kannan, J. Lin, K. Saminathan, Y. Ho, C. Lin, J. Wertz, J. Power. Sources 194, 146 (2009)

    Article  ADS  Google Scholar 

  3. K. Jiao, J. Park, X. Li, Appl. Energy 87, 2770 (2010)

    Article  Google Scholar 

  4. R. Omrani, B. Shabani, Int. J. Hydrog. Energy 42, 28515 (2017)

    Article  Google Scholar 

  5. P. Costamagna, S. Srinivasan, J. Power Sources 102, 253 (2001)

    Article  ADS  Google Scholar 

  6. M.L. Perry, T.F. Fuller, J. Electrochem. Soc. 149, S59 (2002)

    Article  Google Scholar 

  7. P.C. Okonkwo, C. Otor, Int. J. Energy Res. 45, 3780 (2021)

    Article  Google Scholar 

  8. K.A. Nagy, I.Y. Tóth, G. Ballai, Á.T. Varga, I. Szenti, D. Sebők, J. Kopniczky, B. Hopp, Á. Kukovecz, J. Mol. Liq. 304, 112698 (2020)

    Article  Google Scholar 

  9. D. Gerteisen, T. Heilmann, C. Ziegler, J. Power Sources 177, 348 (2008)

    Article  ADS  Google Scholar 

  10. M.S. Wilson, J.A. Valerio, S. Gottesfeld, Electrochim. Acta 40, 355 (1995)

    Article  Google Scholar 

  11. H. Xu, M. Bührer, F. Marone, T.J. Schmidt, F.N. Büchi, J. Eller, J. Electrochem. Soc. 168, 074505 (2021)

    Article  Google Scholar 

  12. M. Khandelwal, M. Mench, J. Power Sources 161, 1106 (2006)

    Article  ADS  Google Scholar 

  13. G. Karimi, X. Li, P. Teertstra, Electrochim. Acta 55, 1619 (2010)

    Article  Google Scholar 

  14. J. Ramousse, S. Didierjean, O. Lottin, D. Maillet, Int. J. Therm. Sci. 47, 1 (2008)

    Article  Google Scholar 

  15. O. Burheim, P. Vie, J. Pharoah, S. Kjelstrup, J. Power Sources 195, 249 (2010)

    Article  ADS  Google Scholar 

  16. N. Zamel, E. Litovsky, X. Li, J. Kleiman, Int. J. Hydrog. Energy 36, 12618 (2011)

    Article  Google Scholar 

  17. E. Sadeghi, N. Djilali, M. Bahrami, J. Power Sources 195, 8104 (2010)

    Article  ADS  Google Scholar 

  18. N. Zamel, E. Litovsky, S. Shakhshir, X. Li, J. Kleiman, Appl. Energy 88, 3042 (2011)

    Article  Google Scholar 

  19. J. Guo, X. Wang, T. Wang, J. Appl. Phys. 101, 063537 (2007). https://doi.org/10.1063/1.2714679

    Article  ADS  Google Scholar 

  20. M. Rahbar, M. Han, S. Xu, H. Zobeiri, X. Wang, Int. J. Heat Mass Transf. 202, 123712 (2023)

    Article  Google Scholar 

  21. F. Tuinstra, J.L. Koenig, Chem. Phys. 53, 1126 (1970)

    ADS  Google Scholar 

  22. A. Patterson, Phys. Rev. 56, 978 (1939)

    Article  ADS  Google Scholar 

  23. G. Sun, X. Li, Y. Qu, X. Wang, H. Yan, Y. Zhang, Mater. Lett. 62, 703 (2008)

    Article  Google Scholar 

  24. F.P. Incropera, D.P. DeWitt, T.L. Bergman, Fundamentals of Heat and Mass Transfer, 6th edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  25. B. Zhu, R. Wang, S. Harrison, K. Williams, R. Goduguchinta, J. Schneiter, J. Pegna, E. Vaaler, X. Wang, Ceram. Int. 44, 11218 (2018)

    Article  Google Scholar 

  26. H. Lin, S. Xu, X. Wang, N. Mei, Small 9, 2585 (2013)

    Article  Google Scholar 

  27. J. Liu, T. Wang, S. Xu, P. Yuan, X. Xu, X. Wang, Nanoscale 8, 10298 (2016)

    Article  ADS  Google Scholar 

  28. B. Zhu, J. Liu, T. Wang, M. Han, S. Valloppilly, S. Xu, X. Wang, ACS Omega 2, 3931 (2017)

    Article  Google Scholar 

  29. N. Hunter, A. Karamati, Y. Xie, H. Lin, X. Wang, ChemPhysChem 23, e202200417 (2022)

    Article  Google Scholar 

  30. Q. Alahmad, M. Rahbar, A. Karamati, J. Bai, X. Wang, J. Power Sources 580, 233377 (2023). https://doi.org/10.1016/j.jpowsour.2023.233377

    Article  Google Scholar 

  31. A. Karamati, N. Hunter, H. Lin, H. Zobeiri, S. Xu, X. Wang, Int. J. Heat Mass Transf. 198, 123393 (2022)

    Article  Google Scholar 

  32. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  33. G. Rusu, M. Diciu, C. Pirghie, E. Popa, Appl. Surf. Sci. 253, 9500 (2007)

    Article  ADS  Google Scholar 

  34. M. Ivashchenko, A. Opanasyuk, I. Buryk, V. Lutsenko, A. Shevchenko, J. Nano- Electron. Phys. 9, 1011 (2017)

    Article  Google Scholar 

  35. D.M. Price, M. Jarratt, Thermochim. Acta 392, 231 (2002)

    Article  Google Scholar 

  36. E. Sadeghi, N. Djilali, M. Bahrami, J. of Power Sources 196, 246 (2011)

    Article  ADS  Google Scholar 

  37. A. Pfrang, D. Veyret, G. Tsotridis, Convection and Conduction Heat Transfer, A. Ahsan edn. (IntechOpen, London, 2011)

  38. L. Chen, Y.-F. Wang, W.-Q. Tao, Therm. Sci. Eng. Prog. 19, 100616 (2020)

    Article  Google Scholar 

  39. D. Tsang, B. Marsden, S. Fok, G. Hall, Carbon 43, 2902 (2005)

    Article  Google Scholar 

  40. M. Mathias, J. Roth, J. Fleming, W. Lehnert, W. Vielstich, Fuel Cell Technology and Applications, 1st edn. (Wiley, Chichester, 2003)

    Google Scholar 

  41. C. Choy, Y. Wong, G. Yang, T. Kanamoto, J. Polym. Sci. Part B 37, 3359 (1999)

    Article  Google Scholar 

  42. L. Song, J.W. Evans, J. Electrochem. Soc. 146, 869 (1999)

    Article  ADS  Google Scholar 

Download references

Funding

This work was partially supported by the National Key Research and Development Program (2019YFE0119900 for H. L), US National Science Foundation (CMMI2032464 for X. W.), National Natural Science Foundation of China (No. 52106220 for S. X.), Shenzhen Science and Technology Program (RCBS20210706092255073 for M. H), and Natural Science Foundation of Shandong Province (ZR2020ME183 for H. L.).

Author information

Authors and Affiliations

Authors

Contributions

QA and MR did experiment, data processing and analysis. MH and HL did structure characterization and analysis. SX and XW conceived the research idea, supervised the project and conducted data analysis. All authors participated in paper writing.

Corresponding authors

Correspondence to Shen Xu or Xinwei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmad, Q., Rahbar, M., Han, M. et al. Thermal Conductivity of Gas Diffusion Layers of PEM Fuel Cells: Anisotropy and Effects of Structures. Int J Thermophys 44, 167 (2023). https://doi.org/10.1007/s10765-023-03283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03283-2

Keywords

Navigation