Skip to main content
Log in

Vapor Pressure Measurements and Predictions for Binary Systems Containing Ethyl Octanoate or Ethyl Dodecanoate as Biodiesels and n-Tetradecane as Petrodiesel Compound

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The present work falls within the research line focused on the phase equilibria of binary mixtures comprising typical compounds, widely present in biodiesel/petrodiesel blends. The study was performed by investigating the liquid–vapor equilibria and thermodynamic properties of two binary systems: ethyl octanoate (1) + n-tetradecane (2) and ethyl dodecanoate (1) + n-tetradecane (2) using experimental and computational methods. The experimental data of vapor pressures were measured through a static apparatus at nine temperatures from (373.15 K and 453.15 K) with an interval of 10 K. The obtained experimental data are used to determine the activity coefficients (γi) and excess molar Gibbs energies (GE) of the investigated binary mixtures by applying the Redlich–Kister equation according to Barker’s method. Positive values of the excess molar Gibbs energy are obtained for all the investigated constant temperatures and over the whole composition range. The obtained GE values were correlated by using two semi-predictive models (NRTL and Heil). The prediction displays agreement with the experimental data obtained with Barker’s method. The present work provides a set of thermodynamic data that may be very useful for the development of eco-friendly alternative biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available within the article.

References

  1. M. Aghbashlo, W. Peng, M. Tabatabaei, S.A. Kalogirou, S. Soltanian, H.H.Z. Bandbafha, O. Mahian, S.S. Lam, Prog. Energy Combust. Sci. 85, 100904 (2021)

    Article  Google Scholar 

  2. E.E.S. Michaelides, Alternative energy sources (Springer, New York, 2012)

    Book  Google Scholar 

  3. W.V. Reid, M.K. Ali, C.B. Field, Glob. Chan. Biol. 26, 274 (2020)

    Article  ADS  Google Scholar 

  4. A. Demirbas, Energy Policy 35, 4661 (2007)

    Article  Google Scholar 

  5. M.H. Hassan, M.A. Kalam, Procedia Eng. 56, 39 (2013)

    Article  Google Scholar 

  6. G.M. Mathew, D. Raina, V. Narisetty, V. Kumar, S. Saran, A. Pugazhendi, R. Sindhu, A. Pandey, P. Binod, Sci. Total. Environ. 794, 148751 (2021)

    Article  ADS  Google Scholar 

  7. I.P. De Oliveira, A.R.L. Caires, Renew. Energy 140, 203 (2019)

    Article  Google Scholar 

  8. M. Canakci, Bioresour. Technol. 98, 1167 (2007)

    Article  Google Scholar 

  9. S. Lahane, K.A. Subramanian, Fuel 139, 537 (2015)

    Article  Google Scholar 

  10. Y. Palani, C. Devarajan, D. Manickam, S. Thanikodi, Environ. Eng. Res. 27 (2022)

  11. A.O. Guimaraes, F. Machado, E.C. Da Silva, A.M. Mansanares, Int. J. Thermophys. 33, 1842 (2012)

    Article  ADS  Google Scholar 

  12. M. Benziane, K. Khimeche, I. Mokbel, A. Dahmani, J. Jose, J. Chem. Eng. Data 58, 492 (2013)

    Article  Google Scholar 

  13. S. Chabane, M. Benziane, K. Khimeche, S. Didaoui, I. Mokbel, D. Trache, J. Jose, N. Yagoubi, J. Chem. Thermodyn. 113, 107 (2017)

    Article  Google Scholar 

  14. M. Benziane, K. Khimeche, I. Mokbel, D. Trache, N. Yagoubi, J. Jose, J. Therm. Anal. Calorim. 126, 845 (2016)

    Article  Google Scholar 

  15. M. Benziane, K. Khimeche, I. Mokbel, T. Sawaya, A. Dahmani, J. Jose, J. Chem. Eng. Data 56, 4736 (2011)

    Article  Google Scholar 

  16. Z. Bouzina, A. Negadi, F. Dergal, I. Mokbel, J. Jose, L. Negadi, J. Mol. Liq. 201, 83 (2015)

    Article  Google Scholar 

  17. N.C.B. Ahmed, L. Negadi, I. Mokbel, A.A. Kaci, J. Jose, J. Chem. Thermodyn. 44, 116 (2012)

    Article  Google Scholar 

  18. L. Sahraoui, K. Khimeche, I. Mokbel, M. Benziane, J. Jose, J. Chem. Eng. Data 62, 1842 (2017)

    Article  Google Scholar 

  19. I. Mokbel, A. Razzouk, T. Sawaya, J. Jose, J. Chem. Eng. Data 54, 819 (2009)

    Article  Google Scholar 

  20. H. Li, K. Luo, S. Xia, P. Ma, Fluid Phase Equilib. 408, 47 (2016)

    Article  Google Scholar 

  21. O. Redlich, A.T. Kister, J. Ind. Eng. Chem. 40, 345 (1948)

    Article  Google Scholar 

  22. J.A. Barker, Aust. J. Chem. 6, 207 (1953)

    Article  Google Scholar 

  23. J.C. Davidtz, Miner. Eng. 12, 1147 (1999)

    Article  Google Scholar 

  24. S. Gebreyohannes, B.J. Neely, K. Gasem, Ind. Eng. Chem. Res. 53, 12445 (2014)

    Article  Google Scholar 

  25. A.G. Carr, J.W. Tester, Fluid Ph. Equilib. 337, 288 (2013)

    Article  Google Scholar 

  26. H. Renon, J.M. Prausnitz, AIChE J. 14, 135 (1968)

    Article  ADS  Google Scholar 

  27. G.M. Wilson, J. Am. Chem. Soc. 86, 127 (1964)

    Article  Google Scholar 

  28. J.F. Heil, J.M. Prausnitz, AIChE J. 12, 678 (1966)

    Article  ADS  Google Scholar 

  29. I. Nagata, T. Ohta, Y. Uchiyama, J. Chem. Eng. Data 18, 54 (1973)

    Article  Google Scholar 

  30. A.A. Touazi, S. Didaoui, K. Khimeche, M. Benziane, Thermochim. Acta 685, 178536 (2020)

    Article  Google Scholar 

  31. A.A. Touazi, S. Didaoui, K. Khimeche, M. Rial, S.A. Moulai, M. Benziane, J. Mol. Liq. 327, 114860 (2021)

    Article  Google Scholar 

  32. G.G. Benge, A comparison of thermodynamic models for the prediction of phase behavior in aqueous-polymer two-phase systems, Doctoral dissertation, Virginia Polytechnic Institute and State University, Blacksburg (1986)

  33. S.V. Freitas, Â. Santos, M.L.C. Moita, L.A. Follegatti-Romero, T.P. Dias, A.J. Meirelles, J.A. Coutinho, Fuel 108, 840 (2013)

    Article  Google Scholar 

  34. L. Zhang, Y. Guo, H. Wei, F. Yang, W. Fang, R. Lin, J. Chem. Eng. Data 55, 4108 (2010)

    Article  Google Scholar 

Download references

Funding

The authors declare that they have received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

FC: Conceptualization, Methodology, Resources, Investigation, data treatment, Writing-Original Draft. MB: Conceptualization, Methodology, Resources, Investigation, Writing-Original Draft. DT: Conceptualization, Review & Editing. AAT, IM, and JJ: Review & Editing the manuscript draft. All authors have approved the initial version of the article.

Corresponding author

Correspondence to Djalal Trache.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

All authors state that they adhere to the Ethical Responsibilities of Authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalghoum, F., Benziane, M., Trache, D. et al. Vapor Pressure Measurements and Predictions for Binary Systems Containing Ethyl Octanoate or Ethyl Dodecanoate as Biodiesels and n-Tetradecane as Petrodiesel Compound. Int J Thermophys 44, 157 (2023). https://doi.org/10.1007/s10765-023-03265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03265-4

Keywords

Navigation