Skip to main content

Advertisement

Log in

A Review of the Application of Thermal Analysis in the Development of Bone Tissue Repair Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

With the increase in osteoporosis and degenerative bone and joint diseases associated with an aging population, the demand for bone tissue repair materials is rapidly increasing. Bone repair materials have evolved to composite materials with biodegradability and for emerging bone repair materials, properties such as viscoelasticity, coefficient of thermal expansion, thermal conductivity, and phase change temperature play an important role in studying the mechanical properties, thermal stability, and thus determining the application scenario of the material. Therefore, thermal analysis is necessary for bone repair. This paper reviews commonly used bone tissue repair materials and thermal analysis techniques applied to bone tissue repair studies, including thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry, and dynamic mechanical analysis. The paper highlights the key role of thermal analysis in bone repair research and summarizes the application of different thermal analysis techniques in the characterization of bone repair materials. The results of this study provide a valuable reference for the thermal analysis of bone repair materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and Code Availability

Not applicable.

References

  1. R.T. Annamalai, X. Hong, N.G. Schott, G. Tiruchinapally, B. Levi, J.P. Stegemann, Biomaterials 208, 32 (2019). https://doi.org/10.1016/j.biomaterials.2019.04.001

    Article  Google Scholar 

  2. E.H. Schemitsch, J. Orthop. Trauma 31(Suppl 5), S20 (2017). https://doi.org/10.1097/BOT.0000000000000978

    Article  Google Scholar 

  3. X. Zhang, Y. Li, Y.E. Chen, J. Chen, P.X. Ma, Nat. Commun. 7, 10376 (2016). https://doi.org/10.1038/ncomms10376

    Article  ADS  Google Scholar 

  4. A. Atala, F.K. Kasper, A.G. Mikos, Sci. Transl. Med. 4, 160rv12 (2012). https://doi.org/10.1126/scitranslmed.3004890

    Article  Google Scholar 

  5. A.M. McDermott, S. Herberg, D.E. Mason et al., Sci. Transl. Med. (2019). https://doi.org/10.1126/scitranslmed.aav7756

    Article  Google Scholar 

  6. J. Breeze, J. Patel, M.S. Dover, R.W. Williams, Br. J. Oral Maxillofac. Surg. 55, 830 (2017). https://doi.org/10.1016/j.bjoms.2017.08.001

    Article  Google Scholar 

  7. T.H. Tosounidis, P.V. Giannoudis, J. Orthop. Trauma 31(Suppl 5), S27 (2017). https://doi.org/10.1097/BOT.0000000000000977

    Article  Google Scholar 

  8. M.K. Sen, T. Miclau, Injury 38(Suppl 1), S75 (2007). https://doi.org/10.1016/j.injury.2007.02.012

    Article  Google Scholar 

  9. A. Sakkas, F. Wilde, M. Heufelder, K. Winter, A. Schramm, Int. J. Implant. Dent. 3, 23 (2017). https://doi.org/10.1186/s40729-017-0084-4

    Article  Google Scholar 

  10. A. Sakkas, A. Schramm, K. Winter, F. Wilde, J. Craniomaxillofac. Surg 46, 312 (2018). https://doi.org/10.1016/j.jcms.2017.11.016

    Article  Google Scholar 

  11. W.G. De Long Jr., T.A. Einhorn, K. Koval et al., J. Bone Jt. Surg. Am. 89, 649 (2007). https://doi.org/10.2106/JBJS.F.00465

    Article  Google Scholar 

  12. W. Wang, K.W.K. Yeung, Bioact. Mater. 2, 224 (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  Google Scholar 

  13. A.A. Jahangir, R.M. Nunley, S. Mehta, A. Sharan, AAos Now 2, 35 (2008)

    Google Scholar 

  14. S. Stevenson, M. Horowitz, JBJS 74, 939 (1992)

    Article  Google Scholar 

  15. L. Deng, Y. Yan, Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 32, 815 (2018). https://doi.org/10.7507/1002-1892.201806028

    Article  Google Scholar 

  16. M.O. Wang, C.E. Vorwald, M.L. Dreher et al., Adv. Mater. 27, 138 (2015). https://doi.org/10.1002/adma.201403943

    Article  Google Scholar 

  17. J. Zhao, L. Zeng, M. Wu et al., Complement. Ther. Clin. Pract. 44, 101419 (2021). https://doi.org/10.1016/j.ctcp.2021.101419

    Article  Google Scholar 

  18. J. Charles, G.R. Ramkumaar, S. Azhagiri, S. Gunasekaran, E-J. Chem. 6, 23 (2009). https://doi.org/10.1155/2009/909017

    Article  Google Scholar 

  19. K Król-Morkisz, K Pielichowska (2019) Polymer Composites with Functionalized Nanoparticles,

  20. S. Torgbo, P. Sukyai, Polym. Degrad. Stab. (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109232

    Article  Google Scholar 

  21. S. Wu, X. Liu, K.W.K. Yeung, C. Liu, X. Yang, Mater. Sci. Eng. R 80, 1 (2014). https://doi.org/10.1016/j.mser.2014.04.001

    Article  Google Scholar 

  22. G.L. Koons, M. Diba, A.G. Mikos, Nat. Rev. Mater. 5, 584 (2020). https://doi.org/10.1038/s41578-020-0204-2

    Article  ADS  Google Scholar 

  23. L.L. Hench, J.M. Polak, Science 295, 1014 (2002). https://doi.org/10.1126/science.1067404

    Article  ADS  Google Scholar 

  24. A. Sharma, G.R. Kokil, Y. He et al., Bioact. Mater. 24, 535 (2023). https://doi.org/10.1016/j.bioactmat.2023.01.003

    Article  Google Scholar 

  25. S. Zwingenberger, C. Nich, R.D. Valladares, Z. Yao, M. Stiehler, S.B. Goodman, BioDrugs 26, 245 (2012). https://doi.org/10.2165/11631680-000000000-00000

    Article  Google Scholar 

  26. R. Kumar, I. Pattanayak, P.A. Dash, S. Mohanty, J. Mater. Sci. 58, 3460 (2023). https://doi.org/10.1007/s10853-023-08226-8

    Article  ADS  Google Scholar 

  27. M.M. Stevens, Mater. Today 11, 18 (2008). https://doi.org/10.1016/s1369-7021(08)70086-5

    Article  Google Scholar 

  28. B. Clarke, Clin. J. Am. Soc. Nephrol. 3(Suppl 3), S131 (2008). https://doi.org/10.2215/CJN.04151206

    Article  Google Scholar 

  29. M. He, Y. Huang, H. Xu et al., Acta Biomater 129, 18 (2021). https://doi.org/10.1016/j.actbio.2021.05.009

    Article  Google Scholar 

  30. F. Cestari, M. Petretta, Y. Yang, A. Motta, B. Grigolo, V.M. Sglavo, Sustain. Mater. Technol. (2021). https://doi.org/10.1016/j.susmat.2021.e00318

    Article  Google Scholar 

  31. S.K.. Avinashi, P. Singh, Shweta, et al. Ceram. Int. 48, 18475 (2022). https://doi.org/10.1016/j.ceramint.2022.03.117

  32. C. Aumnate, N. Nawaukkaratharnant, N. Chuankrerkkul, J. Met. Mater. Miner. 32, 75 (2022). https://doi.org/10.55713/jmmm.v32i3.1271

    Article  Google Scholar 

  33. R.A. Bhatt, T.D. Rozental, Hand Clin. 28, 457 (2012). https://doi.org/10.1016/j.hcl.2012.08.001

    Article  Google Scholar 

  34. M.N. Ahmad Salimi (2013) University of Birmingham,

  35. K. Sariibrahimoglu, J.G.C. Wolke, S.C.G. Leeuwenburgh, J.A. Jansen, Key Eng. Mater. 529–530, 157 (2012)

    Article  Google Scholar 

  36. C. Zou, K. Cheng, W. Weng et al., J. Alloy Compds. 509, 6852 (2011). https://doi.org/10.1016/j.jallcom.2011.03.158

    Article  Google Scholar 

  37. X. Pei, L. Ma, B. Zhang et al., Biofabrication 9, 5008 (2017). https://doi.org/10.1088/1758-5090/aa90ed

    Article  Google Scholar 

  38. T. Arahira, M. Maruta, S. Matsuya, M. Todo, Mater. Lett. 152, 148 (2015). https://doi.org/10.1016/j.matlet.2015.03.128

    Article  Google Scholar 

  39. M. Bohner, Mater. Today 13, 24 (2010). https://doi.org/10.1016/s1369-7021(10)70014-6

    Article  Google Scholar 

  40. S.S. Banerjee, A. Bandyopadhyay, S. Bose, Adv. Eng. Mater. 12, B148 (2010). https://doi.org/10.1002/adem.200980072

    Article  Google Scholar 

  41. W. Habraken, P. Habibovic, M. Epple, M. Bohner, Mater. Today 19, 69 (2016). https://doi.org/10.1016/j.mattod.2015.10.008

    Article  Google Scholar 

  42. M. Bohner, L. Galea, N. Doebelin, J. Eur. Ceram. Soc. 32, 2663 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.028

    Article  Google Scholar 

  43. Q. Wu, X. Zhang, B. Wu, W. Huang, Mater. Lett. 92, 274 (2013). https://doi.org/10.1016/j.matlet.2012.09.118

    Article  Google Scholar 

  44. T. Lou, X. Wang, G. Song, Z. Gu, Z. Yang, Int. J. Biol. Macromol. 69, 464 (2014). https://doi.org/10.1016/j.ijbiomac.2014.06.004

    Article  Google Scholar 

  45. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biomed. Mater. Res. 5, 117 (1971). https://doi.org/10.1002/jbm.820050611

    Article  Google Scholar 

  46. V.V. Valimaki, H.T. Aro, Scand. J. Surg. 95, 95 (2006). https://doi.org/10.1177/145749690609500204

    Article  Google Scholar 

  47. L.L. Hench, H.A. Paschall, J. Biomed. Mater. Res. 7, 25 (1973). https://doi.org/10.1002/jbm.820070304

    Article  Google Scholar 

  48. L. Moimas, M. Biasotto, R. Di Lenarda, A. Olivo, C. Schmid, Acta Biomater. 2, 191 (2006). https://doi.org/10.1016/j.actbio.2005.09.006

    Article  Google Scholar 

  49. B.A.E. Ben-Arfa, I.M. Miranda Salvado, J.M.F. Ferreira, R.C. Pullar, Int. J. Appl. Glass Sci. 8, 337 (2017). https://doi.org/10.1111/ijag.12255

    Article  Google Scholar 

  50. R. Bento, A. Gaddam, J.M.F. Ferreira, Materials (Basel) (2021). https://doi.org/10.3390/ma14164515

    Article  Google Scholar 

  51. Y. Kim, J.Y. Lim, G.H. Yang, J.-H. Seo, H.-S. Ryu, G. Kim, J. Ind. Eng. Chem. 79, 163 (2019). https://doi.org/10.1016/j.jiec.2019.06.027

    Article  Google Scholar 

  52. J.R. Jones, Acta Biomater 9, 4457 (2013). https://doi.org/10.1016/j.actbio.2012.08.023

    Article  Google Scholar 

  53. L. Hupa, K.H. Karlsson, M. Hupa, H.T. Aro, Glass Technol. Eur. 51, 89 (2010)

    Google Scholar 

  54. J.R. Jones, Acta Biomater. 9, 4457 (2013)

    Article  Google Scholar 

  55. M.G. Patino, M.E. Neiders, S. Andreana, B. Noble, R.E. Cohen, Implant Dent. 11, 280 (2002)

    Article  Google Scholar 

  56. A.M. Ferreira, P. Gentile, V. Chiono, G. Ciardelli, Acta Biomater. 8, 3191 (2012). https://doi.org/10.1016/j.actbio.2012.06.014

    Article  Google Scholar 

  57. W. Suchanek, M. Yoshimura, J. Mater. Res. 13, 94 (2011). https://doi.org/10.1557/jmr.1998.0015

    Article  ADS  Google Scholar 

  58. G.A. Rico-Llanos, S. Borrego-Gonzalez, M. Moncayo-Donoso, J. Becerra, R. Visser, Polymers (Basel) (2021). https://doi.org/10.3390/polym13040599

    Article  Google Scholar 

  59. B. Brodsky, E.F. Eikenberry, Methods Enzymol. 82 Pt A, 127 (1982). https://doi.org/10.1016/0076-6879(82)82062-4

    Article  Google Scholar 

  60. K. Gelse, E. Poschl, T. Aigner, Adv. Drug Deliv. Rev. 55, 1531 (2003). https://doi.org/10.1016/j.addr.2003.08.002

    Article  Google Scholar 

  61. K. Klimek, G. Ginalska, Polymers (Basel) (2020). https://doi.org/10.3390/polym12040844

    Article  Google Scholar 

  62. D. Zhang, X. Wu, J. Chen, K. Lin, Bioact Mater 3, 129 (2018). https://doi.org/10.1016/j.bioactmat.2017.08.004

    Article  Google Scholar 

  63. J.A. Burdick, G.D. Prestwich, Adv. Mater. 23, H41 (2011)

    Article  Google Scholar 

  64. M. Aviv, M. Halperin-Sternfeld, I. Grigoriants et al., ACS Appl. Mater. Interfaces 10, 41883 (2018)

    Article  Google Scholar 

  65. Y.C. Shin, D.M. Shin, E.J. Lee et al., Adv. Healthcare Mater. 5, 3035 (2016)

    Article  Google Scholar 

  66. S. Trombino, C. Servidio, F. Curcio, R. Cassano, Pharmaceutics (2019). https://doi.org/10.3390/pharmaceutics11080407

    Article  Google Scholar 

  67. S.M. Khatami, K. Parivar, A.N. Sohi, M. Soleimani, H. Hanaee-Ahvaz, Tissue Cell 65, 101363 (2020)

    Article  Google Scholar 

  68. T.M. Acri, K. Shin, D. Seol et al., Adv. Healthcare Mater. 8, 1801236 (2019)

    Article  Google Scholar 

  69. L Sartore, S Pandini, F Bignotti, F Chiellini (2018),

  70. J.K. Sherwood, S.L. Riley, R. Palazzolo et al., Biomaterials 23, 4739 (2002)

    Article  Google Scholar 

  71. P.X. Ma, J.-W. Choi, Tissue Eng. 7, 23 (2001)

    Article  Google Scholar 

  72. DXB Chen (2019) Extrusion Bioprinting of Scaffolds for Tissue Engineering Applications,

  73. E. Malikmammadov, T.E. Tanir, A. Kiziltay, V. Hasirci, N. Hasirci, J. Biomater. Sci. 29, 863 (2018)

    Article  Google Scholar 

  74. N. Siddiqui, S. Asawa, B. Birru, R. Baadhe, S. Rao, Mol. Biotechnol. 60, 506 (2018). https://doi.org/10.1007/s12033-018-0084-5

    Article  Google Scholar 

  75. M.S. Lopes, A. Jardini, R. Maciel Filho, Procedia Eng. 42, 1402 (2012)

    Article  Google Scholar 

  76. A.J. Lasprilla, G.A. Martinez, B.H. Lunelli, A.L. Jardini, R. Maciel Filho, Biotechnol. Adv. 30, 321 (2012)

    Article  Google Scholar 

  77. A. Lendlein, H. Jiang, O. Jünger, R. Langer, Nature 434, 879 (2005)

    Article  ADS  Google Scholar 

  78. B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, H. Brem, Adv. Drug Deliv. Rev. 107, 163 (2016). https://doi.org/10.1016/j.addr.2016.06.018

    Article  Google Scholar 

  79. Q. Zhang, V.N. Mochalin, I. Neitzel et al., Biomaterials 32, 87 (2011). https://doi.org/10.1016/j.biomaterials.2010.08.090

    Article  Google Scholar 

  80. F.S. Senatov, K.V. Niaza, M.Y. Zadorozhnyy, A.V. Maksimkin, S.D. Kaloshkin, Y.Z. Estrin, J. Mech. Behav. Biomed. Mater. 57, 139 (2016). https://doi.org/10.1016/j.jmbbm.2015.11.036

    Article  Google Scholar 

  81. P. Gabbott, Principles and Applications of Thermal Analysis (Wiley, New York, 2008)

    Book  Google Scholar 

  82. S. Petersmann, M. Spoerk, W. Van De Steene et al., J. Mech. Behav. Biomed. Mater. 104, 103611 (2020). https://doi.org/10.1016/j.jmbbm.2019.103611

    Article  Google Scholar 

  83. P. Jeyachandran, S. Bontha, S. Bodhak, V.K. Balla, M. Doddamani, Compos. Sci. Technol. (2021). https://doi.org/10.1016/j.compscitech.2021.108966

    Article  Google Scholar 

  84. C. Khatua, D. Bhattacharya, B. Kundu, V.K. Balla, S. Bodhak, S. Goswami, Adv. Eng. Mater. (2018). https://doi.org/10.1002/adem.201800329

    Article  Google Scholar 

  85. C. Khatua, S. Bodhak, B. Kundu, V.K. Balla, Materialia 4, 361 (2018). https://doi.org/10.1016/j.mtla.2018.10.014

    Article  Google Scholar 

  86. H. Shao, X. Yu, T. Lin et al., Ceram. Int. 46, 13082 (2020). https://doi.org/10.1016/j.ceramint.2020.02.079

    Article  Google Scholar 

  87. M.N. Sithole, P. Kumar, L.C. du Toit, T. Marimuthu, Y.E. Choonara, V. Pillay, J Biomed Mater Res A 106, 1311 (2018). https://doi.org/10.1002/jbm.a.36333

    Article  Google Scholar 

  88. D Furniss, AB Seddon (2008) Principles and Applications of Thermal Analysis,

  89. M.M. Babu, P.S. Prasad, P. Venkateswara Rao et al., Ceram. Int. 45, 23715 (2019). https://doi.org/10.1016/j.ceramint.2019.08.087

    Article  Google Scholar 

  90. S.A.P. Sughanthy, M.N.M. Ansari, A. Atiqah, J. Market. Res. 9, 2350 (2020). https://doi.org/10.1016/j.jmrt.2019.12.066

    Article  Google Scholar 

  91. G.P. Awasthi, V.K. Kaliannagounder, J. Park et al., Colloids Surf. A (2021). https://doi.org/10.1016/j.colsurfa.2021.126584

    Article  Google Scholar 

  92. D. Atila, A. Karataş, A. Evcin, D. Keskin, A. Tezcaner, Cellulose 26, 9765 (2019). https://doi.org/10.1007/s10570-019-02741-1

    Article  Google Scholar 

  93. X. Li, S. Zhang, X. Zhang, S. Xie, G. Zhao, L. Zhang, Mater. Des. 114, 149 (2017). https://doi.org/10.1016/j.matdes.2016.10.054

    Article  Google Scholar 

  94. M. Yoshida, P.R. Turner, C.J. McAdam, M.A. Ali, J.D. Cabral, Biopolymers 113, e23482 (2022). https://doi.org/10.1002/bip.23482

    Article  Google Scholar 

  95. L.H.P. Mendonça, É.S.N. Lopes, I.C.P. Rodrigues, M.F. de Oliveira, L.P. Gabriel, J. Market. Res. 20, 3697 (2022). https://doi.org/10.1016/j.jmrt.2022.08.066

    Article  Google Scholar 

  96. C. Chen, C. Zhu, X. Hu et al., Drug Des. Dev. Ther. 12, 3269 (2018). https://doi.org/10.2147/DDDT.S173289

    Article  Google Scholar 

  97. A. dos Santos Silva, B.V.M. Rodrigues, F.C. Oliveira et al., J. Polym. Res. (2019). https://doi.org/10.1007/s10965-019-1706-8

    Article  Google Scholar 

  98. C.-G. Liu, Y.-T. Zeng, R. Kankala, S.-S. Zhang, A.-Z. Chen, S.-B. Wang, Materials (2018). https://doi.org/10.3390/ma11101832

    Article  Google Scholar 

  99. A. Augustine, R. Augustine, A. Hasan et al., J. Mater. Sci. Mater. Med. 30, 96 (2019). https://doi.org/10.1007/s10856-019-6300-4

    Article  Google Scholar 

  100. D. Mondal, T.L. Willett, J. Mech. Behav. Biomed. Mater. 104, 103653 (2020). https://doi.org/10.1016/j.jmbbm.2020.103653

    Article  Google Scholar 

  101. D. Chuan, R. Fan, Y. Wang et al., Compos. Sci. Technol. (2020). https://doi.org/10.1016/j.compscitech.2020.108107

    Article  Google Scholar 

  102. H. Budharaju, S. Suresh, M.P. Sekar et al., Mater. Des. (2023). https://doi.org/10.1016/j.matdes.2023.112064

    Article  Google Scholar 

  103. K. Hayashi, A. Tsuchiya, M. Shimabukuro, K. Ishikawa, Mater. Des. (2022). https://doi.org/10.1016/j.matdes.2022.110468

    Article  Google Scholar 

  104. D. Shekhawat, A. Singh, M.K. Banerjee, T. Singh, A. Patnaik, Ceram. Int. 47, 3013 (2021). https://doi.org/10.1016/j.ceramint.2020.09.214

    Article  Google Scholar 

  105. C.R. Alcala-Orozco, I. Mutreja, X. Cui, G.J. Hooper, K.S. Lim, T.B.F. Woodfield, Bone 154, 116198 (2022). https://doi.org/10.1016/j.bone.2021.116198

    Article  Google Scholar 

  106. J. Lee, J. Hong, W. Kim, G.H. Kim, Carbohydr. Polym. 250, 116914 (2020). https://doi.org/10.1016/j.carbpol.2020.116914

    Article  Google Scholar 

  107. W. Kim, G. Kim, Biofabrication 12, 015007 (2019). https://doi.org/10.1088/1758-5090/ab436d

    Article  ADS  Google Scholar 

  108. H.K. Chang, D.H. Yang, M.Y. Ha et al., Carbohydr. Polym. 287, 119328 (2022). https://doi.org/10.1016/j.carbpol.2022.119328

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51606116) and Project of Shanghai Municipal Science and Technology Commission (Grant No. 19195810800).

Funding

Project of Shanghai Municipal Science and Technology Commission (Grant No. 19195810800). National Natural Science Foundation of China (Grant No.51606116).

Author information

Authors and Affiliations

Authors

Contributions

JZ contributed to Conceptualization (equal); Investigation (equal); Data Curation (equal); Writing of the original draft; and Writing, Reviewing, & Editing of the manuscript; YunGuo contributed to Conceptualization (equal) and Supervision (equal). Yunsheng Zhang contributed to Investigation (equal) and Data Curation (equal). Na Chen contributed to Investigation (equal) and Data Curation (equal).

Corresponding author

Correspondence to Yun Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Ethical Approval

This article is a review article and does not involve any human or animal research, does not violate any ethical committee guidelines, the resources in this article are obtained from public repositories, does not involve any violation of rights, and does not violate any ethical guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Guo, Y., Zhang, Y. et al. A Review of the Application of Thermal Analysis in the Development of Bone Tissue Repair Materials. Int J Thermophys 44, 124 (2023). https://doi.org/10.1007/s10765-023-03235-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03235-w

Keywords

Navigation