Skip to main content
Log in

Propagation Characteristics of Ultrasonic Waves Generated by Phased Array Laser in Coating/Substrate Structure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The phased array laser ultrasonic technology is suitable for non-destructive testing (NDT) of coating/substrate structure due to its excellent ability to generate ultrasonic waves with a high signal-to-noise ratio and flexible regulation. This research focuses on the propagation characteristics of ultrasonic waves generated by phased array laser in the coating/substrate (Ni/Al) structure. Considering the spatiotemporal distribution of phased array laser energy and the boundary conditions at the interface, the finite element model of phased array laser-generated ultrasonic waves in the coating/substrate structure was established. Furthermore, the propagation characteristics of bulk wave and Rayleigh wave were investigated, and the influences of element spacing and time delay of phased array laser on the steering characteristics of bulk wave and tuning characteristics of Rayleigh wave were analyzed. Finally, the accuracy of the simulation was verified through experiments based on the laser ultrasonic detection system. The simulation and experimental results indicate that the phased array laser can enhance the bulk wave at the steering direction, with the best enhancement effect occurring when the steering direction coincides with the maximum radiation direction in the directivity pattern of the laser-generated bulk wave. Besides, phased array laser can enhance certain frequency components of tuned Rayleigh waves by adjusting element spacing or time delay. The enhancement effect on low-frequency components is more significant with a short time delay or large element spacing. In contrast, the enhancement effect on high-frequency components is more significant with a long time delay or small element spacing. The research work in this paper has clarified the propagation characteristics for different modes of ultrasonic waves generated by phased array laser in the coating/substrate structure, which can provide a theoretical basis for subsequent defect detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H.X. Sun, S.Y. Zhang, J.P. Xia, Int. J. Thermophys. (2015). https://doi.org/10.1007/s10765-014-1775-1

    Article  Google Scholar 

  2. Z.H. Liu, H.B. Yang, Y.F. Jia, X. Shu, Surf. Coat. Technol. (2017). https://doi.org/10.1016/j.surfcoat.2017.07.075

    Article  Google Scholar 

  3. N.P. Padture, M. Gell, E.H. Jordan, Science (2002). https://doi.org/10.1126/science.1068609

    Article  Google Scholar 

  4. M.V. Adigamova, I.V. Lukiyanchuk, I.A. Tkachenko, V.P. Morozova, Mater. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2021.125231

    Article  Google Scholar 

  5. A. Zalounina, J. Andreasen, Int. J. Fract. (2005). https://doi.org/10.1007/s10704-005-7193-4

    Article  Google Scholar 

  6. L.C. Guo, S.Q. Huang, L. Zhang, P.F. Jia, Int. J. Solids Struct. (2018). https://doi.org/10.1016/j.ijsolstr.2018.03.025

    Article  Google Scholar 

  7. Y.J. Zhong, X.R. Gao, L. Luo, Y.D. Pan, C.R. Qiu, J. Nondestruct. Eval. (2017). https://doi.org/10.1007/s10921-017-0451-3

    Article  Google Scholar 

  8. H. Selim, M. Delgado-Prieto, J. Trull, R. Pico, L. Romeral, C. Cojocaru, Ultrasonics (2020). https://doi.org/10.1016/j.ultras.2019.106000

    Article  Google Scholar 

  9. J.J. Liu, X.H. Feng, A.M. Yin, L.P. Cheng, L. Fan, X.D. Xu, S.Y. Zhang, Appl. Opt. (2020). https://doi.org/10.1364/ao.387293

    Article  Google Scholar 

  10. H.X. Sun, S.Y. Zhang, Int. J. Thermophys. (2013). https://doi.org/10.1007/s10765-012-1350-6

    Article  Google Scholar 

  11. K.H. Sun, C.M. Sun, J.W. Li, Z.Y. Wang, W. Gao, Q.C. Fan, Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-02666-z

    Article  Google Scholar 

  12. L. Yuan, Y. Shi, Z. Shen, X. Ni, Opt. Laser Technol. (2008). https://doi.org/10.1016/j.optlastec.2007.06.002

    Article  Google Scholar 

  13. J.J. Wang, B.Q. Xu, Z.H. Shen, X.W. Ni, J. Lu, Appl. Surf. Sci. (2009). https://doi.org/10.1016/j.apsusc.2009.03.054

    Article  Google Scholar 

  14. Y.J. Guan, H.X. Sun, S.Q. Yuan, S.Y. Zhang, Y. Ge, Int. J. Thermophys. (2016). https://doi.org/10.1007/s10765-016-2107-4

    Article  Google Scholar 

  15. E. Grunwald, R. Hammer, R. Nuster, P.A. Wieser, M. Hinderer, I. Wiesler, R. Zelsacher, M. Ehmann, R. Brunner, Coatings (2017). https://doi.org/10.3390/coatings7120230

    Article  Google Scholar 

  16. G. Rosa, R. Oltra, M.H. Nadal, J. Appl. Phys. (2002). https://doi.org/10.1063/1.1471579

    Article  Google Scholar 

  17. Y. Watanabe, S. Fujisawa, A. Yonezu, X. Chen, Surf. Coat. Technol. (2016). https://doi.org/10.1016/j.surfcoat.2015.12.026

    Article  Google Scholar 

  18. Y. Watanabe, A. Yonezu, X. Chen, J. Nondestruct. Eval. (2018). https://doi.org/10.1007/s10921-017-0456-y

    Article  Google Scholar 

  19. N. Montinaro, G. Epasto, D. Cerniglia, E. Guglielmino, NDT E Int. (2020). https://doi.org/10.1016/j.ndteint.2020.102321

    Article  Google Scholar 

  20. C.X. Pei, K. Demachi, H.T. Zhu, K. Koyama, M. Uesaka, Int. J. Appl. Electromagn. Mech. (2012). https://doi.org/10.3233/jae-2012-1489

    Article  Google Scholar 

  21. C.X. Pei, D.C. Yi, T.H. Liu, X. Kou, Z.M. Chen, NDT E Int. (2020). https://doi.org/10.1016/j.ndteint.2020.102273

    Article  Google Scholar 

  22. C.X. Pei, K. Demachi, T. Fukuchi, K. Koyama, M. Uesaka, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4802685

    Article  Google Scholar 

  23. M.H. Noroy, D. Royer, M. Fink, J. Acoust. Soc. Am. (1993). https://doi.org/10.1121/1.407516

    Article  Google Scholar 

  24. J. Yang, N. DeRidder, C. Ume, J. Jarzynski, Ultrasonics (1993). https://doi.org/10.1016/0041-624X(93)90046-3

    Article  Google Scholar 

  25. F. Gao, H. Zhou, C. Huang, Opt. Commun. (2020). https://doi.org/10.1016/j.optcom.2020.126070

    Article  Google Scholar 

  26. C.I. Swift, S.G. Pierce, B. Culshaw, Smart Mater. Struct. (2007). https://doi.org/10.1088/0964-1726/16/3/020

    Article  Google Scholar 

  27. J.S. Yang, T. Sanderson, C. Ume, J. Jarzynski, J. Nondestruct. Eval. (1997). https://doi.org/10.1007/BF03325380

    Article  Google Scholar 

  28. Y. Chang, D.X. Yang, Y.N. Guo, J. Appl. Phys. (2019). https://doi.org/10.1063/1.5063509

    Article  Google Scholar 

  29. T. Stratoudaki, M. Clark, P.D. Wilcox, Opt. Express (2016). https://doi.org/10.1364/oe.24.021921

    Article  Google Scholar 

  30. T. Stratoudaki, M. Clark, P.D. Wilcox, AIP Conf. Proc. (2017). https://doi.org/10.1063/1.4974563

    Article  Google Scholar 

  31. W. Zeng, X.Q. Zou, F.Y. Yao, Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165733

    Article  Google Scholar 

  32. H. Sui, K.S. Li, Z.Y. Zhu, L. Cheng, X.R. Gao, H.N. Zhu, Z.L. Hu, Mod. Phys. Lett. B (2021). https://doi.org/10.1142/s0217984921501037

    Article  Google Scholar 

  33. P. Karppinen, A. Salmi, P. Moilanen, T. Karppinen, Z.M. Zhao, R. Myllyla, J. Timonen, E. Haeggstrom, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4801394

    Article  Google Scholar 

  34. P. Moilanen, A. Salmi, V. Kilappa, Z.M. Zhao, J. Timonen, E. Haeggstrom, J. Appl. Phys. (2017). https://doi.org/10.1063/1.5007224

    Article  Google Scholar 

  35. B.Q. Xu, Z.H. Shen, X.W. Ni, J. Lu, Y.W. Wang, J. Appl. Phys. (2004). https://doi.org/10.1063/1.1639142

    Article  Google Scholar 

  36. B.Q. Xu, Z.H. Shen, X.W. Ni, J.J. Wang, J.F. Guan, J. Lu, Opt. Laser Technol. (2006). https://doi.org/10.1016/j.optlastec.2004.12.002

    Article  Google Scholar 

  37. Z. Shen, L. Yuan, H. Zhang, Laser ultrasonic in Solids (Posts and Telecom Press, Beijing, 2015)

    Google Scholar 

  38. Y. Huang, B. Li, L. Chen, Z.L. Zhang, F. Qin, Appl. Acoust. (2023). https://doi.org/10.1016/j.apacoust.2023.109230

    Article  Google Scholar 

  39. A. Pantano, D. Cerniglia, Appl. Phys. A-Mater. Sci. Process. (2008). https://doi.org/10.1007/s00339-008-4442-1

    Article  Google Scholar 

  40. J.J. Wang, B.Q. Xu, Z.H. Shen, X.W. Ni, J. Lu, Jpn. J. Appl. Phys. (2008). https://doi.org/10.1143/jjap.47.956

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Number: U1809219), the Key Research and Development Project of Zhejiang Province (Grant Number: 2020C01088), and the Zhejiang Provincial Natural Science Foundation of China (Grant Number: LQ23E050012).

Author information

Authors and Affiliations

Authors

Contributions

QC: Conceptualization, Methodology, Software, Formal analysis, Data Curation, Writing—Original Draft, Visualization. JH: Conceptualization, Methodology, Investigation, Resources, Data Curation, Writing—Review and Editing, Supervision. SY: Conceptualization, Writing—Review and Editing, Funding acquisition, Supervision. XG: Software, Writing—Review and Editing. HH: Validation, Resources. YL: Methodology.

Corresponding author

Correspondence to Jun He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., He, J., Yang, S. et al. Propagation Characteristics of Ultrasonic Waves Generated by Phased Array Laser in Coating/Substrate Structure. Int J Thermophys 44, 116 (2023). https://doi.org/10.1007/s10765-023-03225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03225-y

Keywords

Navigation