Skip to main content

Advertisement

Log in

Experimental Study of VLE Properties of n-Tetradecane in the Supercritical Binary Solvent (0.367 Propane/0.633 n-Butane)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A high-temperature and high-pressure optical cell VLE apparatus has been applied to measure phase equilibrium properties of n-tetradecane in the supercritical binary solvent (0.367propane + 0.633 n-butane mass fraction) at temperatures of 413.15 K, 433.15 K, and 453.15 K between of pressures (0.9 and 6.6) MPa. The combined expanded uncertainty of the temperature, pressure, and concentration measurements at 0.95 confidence level with a coverage factor of k = 2 is estimated to be 0.15 K, 0.0022, and 0.035, respectively. The critical parameters (TC, PC, \(w_{C}\)) were determined based on the measured isothermal phase equilibrium data of the ternary system n-tetradecane + propane/n-butane. It is shown that the critical temperature and pressure of the n-tetradecane + propane/n-butane system increases with concentration of n-tetradecane increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. V.F. Khairutdinov, F.M. Gumerov, ISh. Khabriev, T.R. Akhmetzyanov, I.Z. Salikhov, I. Polishuk, I.M. Abdulagatov, Fluid Phase Equilib. 564, 3615 (2022). https://doi.org/10.1016/j.fluid.2022.113615

    Article  Google Scholar 

  2. V.F. Khairutdinov, F.M. Gumerov, Z.I. Zaripov, ISh. Khabriev, LYu. Yarullin, I.M. Abdulagatov, J. Supercrit. Fluids 156, 4628 (2020). https://doi.org/10.1016/j.supflu.2019.104628

    Article  Google Scholar 

  3. V.F. Khairutdinov, F.M. Gumerov, F.R. Gabitov, Z.I. Zaripov, ISh. Khabriev, T.R. Akhmetzyanov, I.M. Abdulagatov, J. Chem. Eng. Data 65, 3306–3317 (2020). https://doi.org/10.1021/acs.jced.0c00104

    Article  Google Scholar 

  4. V.F. Khairutdinov, F.M. Gumerov, ISh. Khabriev, M.I. Farakhov, I.Z. Salikhov, I. Polishuk, I.M. Abdulagatov, Fluid Phase Equilib. 510, 112502 (2020). https://doi.org/10.1016/j.fluid.2020.112502

    Article  Google Scholar 

  5. ISh. Khabriev, V.F. Khairutdinov, F.M. Gumerov, R.M. Khuzakhanov, R.M. Garipov, I.M. Abdulagatov, J. Mol. Liquids 337, 6371 (2021). https://doi.org/10.1016/j.molliq.2021.116371

    Article  Google Scholar 

  6. V.F. Khairutdinov, F.M. Gumerov, M.I. Farakhov, Z.I. Zaripov, T.R. Akhmetzyanov, H.N. Truong, Pet. Sc. Tech. 37, 290–295 (2019). https://doi.org/10.1080/10916466.2018.1542440

    Article  Google Scholar 

  7. V.F. Khairutdinov, F.M. Gumerov, Z.I. Zaripov, M.I. Farakhov, J. Physics, Conf. Ser. 1385, 1–6 (2019). https://doi.org/10.1088/1742-6596/1385/1/012059

    Article  Google Scholar 

  8. F.M. Gumerov, R.A. Kayumov, R.A. Usmanov, A.A. Sagdeev, I.S. Abdullin, R.F. Sharafeev, Am. J. Anal. Chem. 3, 950–957 (2012). https://doi.org/10.4236/ajac.2012.312A126

    Article  Google Scholar 

  9. V.F. Khairutdinov, T.R. Akhmetzyanov, F.R. Gabitov, Z.I. Zaripov, F.M. Gumerov, M.I. Farakhov, A.V. Mukhutdinov, R.S. Yarullin, Pet. Sc. Tech 34, 372–378 (2016). https://doi.org/10.1080/10916466.2015.1136951

    Article  Google Scholar 

  10. V.F. Khairutdinov, F.M. Gumerov, ISh. Khabriev, R.F. Gabitov, M.I. Farakhov, F.R. Gabitov, Z.I. Zaripov, Ecol. Ind. Russia 24, 4–10 (2020). https://doi.org/10.1080/10916466.2015.1136951

    Article  Google Scholar 

  11. V.F. Khairutdinov, T.R. Akhmetzyanov, F.R. Gabitov, ISh. Khabriev, M.I. Farakhov, Supercritical fluid propane–butane extraction treatment of oil-bearing sands. Theor. Bases Chem. Eng. 51, 299–306 (2017). https://doi.org/10.1134/S0040579517030083

    Article  Google Scholar 

  12. V.F. Khairutdinov, ISh. Khabriev, F.M. Gumerov, T.R. Akhmetzyanov, LYu. Yarullin, LYu. Sabirova, I. Polishuk, I.M. Abdulagatov, J. Chem. Eng. Data 68, 138–150 (2023). https://doi.org/10.1021/acs.jced.2c00605

    Article  Google Scholar 

  13. C.E. Schwarz, G.J.K. Bonthuys, J.H. Knoetze, A.J. Burger, J. Supercr. Fluids 46, 233–237 (2008). https://doi.org/10.1016/j.supflu.2008.03.008

    Article  Google Scholar 

  14. R. Gonzalez, F. Murrieta-Guevara, O. Parra, A. Trejo, J. Fluid Phase Equilib. 34, 69–81 (1987). https://doi.org/10.1016/0378-3812(87)85051-3

    Article  Google Scholar 

  15. V.V. de Leeuw, T.W. De Loos, H.A. Kooijman, De Swaan, Arons. J. Fluid Phase Equilib. 73, 285–321 (1992). https://doi.org/10.1016/0378-3812(92)80015-2

    Article  Google Scholar 

  16. M. Frenkel, R. Chirico, V. Diky, C.D. Muzny, A.F. Kazakov, J.W. Magee, I.M. Abdulagatov, J.W. Kang, NIST Thermo Data Engine, NIST Standard Reference Database 103b-Pure Compound, Binary Mixtures, and Chemical Reactions, Version 5.0, National Institute Standards and Technology, Boulder, Colorado-Gaithersburg, MD, (2010).

  17. J.R. Barber, Phase relationships of binary hydrocarbon systems propane-n-butane, Masters Thesis, Ohio State University, (1964).

  18. W.B. Kay, J. Chem. Eng. Data 15, 46–52 (1970). https://doi.org/10.1021/je60044a026

    Article  Google Scholar 

  19. C.N. Nysewander, B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 32, 118–123 (1940). https://doi.org/10.1021/ie50361a026

    Article  Google Scholar 

  20. C.D. Holcomb, J.W. Magee, W.M. Haynes, Density Measurements on Natural Gas Liquids. Research Report RR-147, Gas Processors Association Project No. 916, Tulsa OK, 1995.

  21. P. Beranek, I. Wichterle, Fluid Phase Equilib. 6, 279–282 (1981). https://doi.org/10.1016/0378-3812(81)85010-8

    Article  Google Scholar 

  22. G. Seong, K.-P. Yoo, J.S. Lim, J. Chem. Eng. Data 53, 2783–2786 (2008). https://doi.org/10.1021/je800377b

    Article  Google Scholar 

  23. E. Mansfield, S.L. Outcalt, J. Chem. Eng. Data 60, 2447–2453 (2015). https://doi.org/10.1021/acs.jced.5b00308

    Article  Google Scholar 

  24. S.L. Outcalt, B.-C. Lee, J. Res. Natl. Inst. Stand. Technol. 109, 525–531 (2004). https://doi.org/10.6028/jres.109.039

    Article  Google Scholar 

  25. Y. Kayukawa, K. Fujii, Y. Higashi, J. Chem. Eng. Data 50, 579–582 (2005). https://doi.org/10.1021/je0496701

    Article  Google Scholar 

  26. V.G. Skripka, I.E. Nikitina, L.A. Zhdanovich, A.G. Sirotin, O.A. Ben’yaminovich, Gaz. Prom. 15, 35–60 (1970)

    Google Scholar 

  27. G.I. Kaminishi, C. Yokoyama, S. Takahashi, Sekiyu Gakkaishi 28, 77–82 (1985). https://doi.org/10.1627/jpi1958.28.77

    Article  Google Scholar 

  28. A.Q. Clark, K. Stead, J. Chem. Thermodyn. 20, 413–427 (1988). https://doi.org/10.1016/0021-9614(88)90178-4

    Article  Google Scholar 

  29. L.C. Kahre, J. Chem. Eng. Data 18, 267–270 (1973). https://doi.org/10.1021/je60058a030

    Article  Google Scholar 

  30. R.B. Grieves, G. Thodos, J. Appl. Chem. 13, 466–470 (1963). https://doi.org/10.1002/jctb.5010131007

    Article  Google Scholar 

  31. M. Hirata, S. Suda, T. Hakuta, K. Nagahama, Light hydrocarbon vapor-liquid equilibria Mem. Fac. Technol., Tokyo Metrop. Univ. 19, 103–122 (1969).

  32. C.B. Soo, P. Theveneau, C. Christophe, D. Ramjugernath, D. Richon, J. Supercrit. Fluids 55, 545–553 (2010). https://doi.org/10.1016/j.supflu.2010.10.022

    Article  Google Scholar 

  33. N. Juntarachat, S. Bello, R. Privat, J.-N. Jaubert, J. Chem. Eng. Data 58, 671–676 (2013). https://doi.org/10.1021/je301209u

    Article  Google Scholar 

  34. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP, version 10.0, Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD, 2018.

  35. D.L. Camin, F.D. Rossini, J. Phys. Chem. 59, 1173–1179 (1955). https://doi.org/10.1021/j150533a014

    Article  Google Scholar 

  36. P.H. van Konynenburg, R.L. Scott, Philos. Trans. R. Soc. Lond. A 298, 495–540 (1980). https://doi.org/10.1098/rsta.1980.0266

    Article  ADS  Google Scholar 

  37. B. N. Taylor, C.E. Kuyatt, Guidelines for evaluating and expressing the uncertainty of NIST measurement results; NIST Technical Note 1297; National Institute of Standards and Technology: Gaithersburg, (1994).

  38. F.C.v.N. Fourie, C.E. Schwarz, J.H. Knoetze, Considerations for the design of high-pressure phase equilibrium and solubility measurements equipment, in: Supercritical Fluids, (New York, NOVA Science Publisher, Inc., 2010), Chapter 6, pp.451–492.

  39. L.A. Galicia-Luna, A. Ortega-Rodriguez, D. Richon, J. Chem. Eng. Data 45, 265–271 (2000). https://doi.org/10.1021/je990187d

    Article  Google Scholar 

  40. S. Laugier, D. Richon, Rev. Sci. Instr. 57, 469–472 (1986). https://doi.org/10.1063/1.1138909

    Article  ADS  Google Scholar 

  41. V. Uribe-Vargas, A. Trejo, Fluid Phase Equilib. 220, 137–145 (2004). https://doi.org/10.1016/j.fluid.2004.03.009

    Article  Google Scholar 

  42. M.M. Elbaccouch, M.B. Raymond, J. Richard Elliott, J. Chem. Eng. Data 45, 280–287 (2000)

    Article  Google Scholar 

  43. Zh. Zhang, W. Wu, Zh. Liu, B. Han, H. Gao, T. Jiang, Phys. Chem. Chem. Phys. 6, 2352–2357 (2004). https://doi.org/10.1039/B315417C

    Article  Google Scholar 

  44. M.J. Lee, L.H. Tsai, G.B. Hong, H.M. Lin, Ind. Eng. Chem. Res. 41, 3247–3252 (2002). https://doi.org/10.1021/ie020583g

    Article  Google Scholar 

  45. P. Naidoo, D. Ramjugemath, J.D. Raal, Fluid Phase Equilib. 269, 104–112 (2008). https://doi.org/10.1016/j.fluid.2008.05.002

    Article  Google Scholar 

  46. H. Madani, A. Valtz, C. Coquelet, A. Hassen Meniani, D. Richon, J. Chem. Thermodyn. 40, 1490–1494 (2008). https://doi.org/10.1016/j.jct.2008.06.002

    Article  Google Scholar 

  47. S.L. Outcalt, B.C. Lee, J. Res. Nat. Inst. Stand. Technol. 109, 525–531 (2004). https://doi.org/10.6028/jres.109.039

    Article  Google Scholar 

  48. Sh. Takishima, K. Saiki, K. Arai, Sh. Saito, J. Chem. Eng. Jap. 19, 48–56 (1986). https://doi.org/10.1252/jcej.19.48

    Article  Google Scholar 

  49. S. Peper, R. Dohrn, J. Supercrit. Fluids 66, 2–15 (2012). https://doi.org/10.1016/j.supflu.2011.09.021

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment No. 075-01508-23-00 of December 29, 2022 (Supercritical fluid technologies in polymer processing FZSG-2023-0007). The study was carried out using the equipment of the Center for Collective use «Nanomaterials and Nanotechnology» of the Kazan National Research Technological University.

Funding

The Ministry of Science and Higher Education of the Russian Federation (075-01508-23-00) and (FZSG-2023-0007).

Author information

Authors and Affiliations

Authors

Contributions

VFK: investigation, supervision and editing software; ISK: formal analysis, software; TRA: writing—review and editing software; LYY: investigation, resources; FRG: conceptualization, methodology; IMA: writing—original draft.

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Ethics declarations

Competing interest

The authors have no competing interests, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairutdinov, V.F., Khabriev, I.S., Akhmetzyanov, T.R. et al. Experimental Study of VLE Properties of n-Tetradecane in the Supercritical Binary Solvent (0.367 Propane/0.633 n-Butane). Int J Thermophys 44, 114 (2023). https://doi.org/10.1007/s10765-023-03220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03220-3

Keywords

Navigation