Skip to main content
Log in

Isothermal Vapor–Liquid Equilibrium for the Binary System of Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-Pentafluoropropane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, the isothermal vapor–liquid equilibrium (VLE) of trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)) and 1,1,1,3,3-pentafluoropropane (HFC245fa) binary system, along with the saturated vapor pressures HFO-1234ze(E) and HFC-245fa, were measured by static-analytic apparatus. The VLE measurements of HFO-1234ze(E) + HFC-245fa binary system are performed at temperatures from (293.28 to 333.09) K, while the measurements for vapor pressures of HFO1234ze(E) and HFC-245fa were conducted in the temperature range of (263.08 to 363.01) K. The vapor pressures were correlated by the Peng-Robinson (PR) equation of state (EoS) associated with the Mathias-Copeman (MC) alpha function, and the VLE data were correlated to the PRMC-vdW model where the MC alpha function and the van der Waals (vdW) mixing rules were combined with the PR EoS. The experimental VLE data were compared with the predictive E-PPR78 model. The modeling results of the PRMC-vdW model had good agreement with the experimental VLE data, while the E-PPR78 model shows negative bias in the prediction of equilibrium pressures. The experimental VLE data were also compared with literature data for consistency checks. The two sets of VLE data were basically consistent, while a discrepancy was found when analyzing the relationship between binary interaction parameter kij and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HFCs:

Hydrofluorocarbons

VLE:

Vapor–liquid equilibrium

HFOs:

Hydrofluoro-olefins

vdW:

Van der Waals mixing rules

PR:

Peng-Robinson equation of state

MC:

Mathias-Copeman alpha function

MRDP :

Average relative deviation of pressure

MADy :

Average absolute deviation of vapor-composition

HFC-245fa:

1,1,1,3,3-Pentafluoropropane

HFO-1234ze(E):

Trans-1,3,3,3-tetrafluoropropene

EoS:

Equation of state

a :

Energy parameter of the equation of state

b :

Covolume parameter of the equation of state

GE :

Excess Gibbs energy

q :

Coefficient of MHV2 mixing rule

N :

Number of data points

p :

Pressure (MPa)

R :

Molar gas constant (8.314472 J·mol1·K1)

T :

Temperature (K)

u :

Combined uncertainty

U :

Expanded uncertainty

x :

Liquid phase mole fraction

y :

Vapor phase mole fraction

n :

Molar mass

m1, 2, 3 :

Adjustable parameters

k ij :

Binary interaction parameter

OF:

Objective function

α :

Temperature-dependent alpha function

τ :

Dimensionless interaction parameters

δ :

Relative deviation

Δ :

Absolute deviation

ω:

Acentric factor

i, j:

Molecular species

c:

Critical property

exp:

Experimental

cal:

Calculated

References

  1. M.O. McLinden, J.S. Brown, R. Brignoli, A.F. Kazakov, P.A. Domanski, Limited options for low-global-warming-potential refrigerants. Nat. Commun. 8, 1–9 (2017). https://doi.org/10.1038/ncomms14476

    Article  Google Scholar 

  2. S. Bobbo, G. Di Nicola, C. Zilio, J.S. Brown, L. Fedele, Low GWP halocarbon refrigerants: a review of thermophysical properties. Int. J. Refrig. 90, 181–201 (2018). https://doi.org/10.1016/j.ijrefrig.2018.03.027

    Article  Google Scholar 

  3. C. Coquelet, D. Richon, Experimental determination of phase diagram and modeling: application to refrigerant mixtures. Int. J. Refrig. 32, 1604–1614 (2009). https://doi.org/10.1016/j.ijrefrig.2009.03.013

    Article  Google Scholar 

  4. M. Hillert, Phase Equilibria Phase Diagrams and Phase Transformations (Cambridge University Press, Cambridge, 2007). https://doi.org/10.1017/cbo9780511812781

    Book  MATH  Google Scholar 

  5. W. Zhang, Z.Q. Yang, J. Lu, J. Lu, Vapor pressures of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf). J. Chem. Eng. Data. 58, 2307–2310 (2013). https://doi.org/10.1021/je400407z

    Article  Google Scholar 

  6. Z.Q. Yang, L.G. Kou, W. Mao, J. Lu, W. Zhang, J. Lu, Isothermal vapor-liquid equilibrium for the binary system of 2,3,3,3-tetrafluoropropene and 2-chloro-1,1,1,2-tetrafluoropropane. J. Chem. Eng. Data. 60, 1153–1156 (2015). https://doi.org/10.1021/je501130r

    Article  Google Scholar 

  7. Z.Q. Yang, L.G. Kou, W. Mao, J. Lu, W. Zhang, J. Lu, Experimental study of saturated pressure measurements for 2,3,3,3-tetrafluoropropene (HFO-1234yf) and 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb). J. Chem. Eng. Data. 59, 157–160 (2014). https://doi.org/10.1021/je400970y

    Article  Google Scholar 

  8. Z.Q. Yang, L.G. Kou, J. Lu, W. Zhang, W. Mao, J. Lu, Isothermal vapor-liquid equilibria measurements for binary systems of 2,3,3,3-tetrafluoropropene (HFO-1234yf) + 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) and 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) + 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244. Fluid Phase Equilib. 414, 143–148 (2016). https://doi.org/10.1016/j.fluid.2016.01.027

    Article  Google Scholar 

  9. Z. Qiang Yang, L. Gang Kou, S. Han, C. Li, Z. Jun Hao, W. Mao, W. Zhang, J. Lu, Vapor-liquid equilibria of 2,3,3,3-tetrafluoropropene (HFO-1234yf) + 1,1,1,2,2-pentafluoropropane (HFC-245cb) system. Fluid Phase Equilib. 427, 390–393 (2016). https://doi.org/10.1016/j.fluid.2016.07.031

    Article  Google Scholar 

  10. A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán, F. Molés, B. Peris, Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements. Appl. Therm. Eng. 71, 259–265 (2014). https://doi.org/10.1016/j.applthermaleng.2014.06.056

    Article  Google Scholar 

  11. G.M. Rusch, A. Tveit, H. Muijser, M.M. Tegelenbosch-Schouten, G.M. Hoffman, The acute, genetic, developmental and inhalation toxicology of trans-1,3,3,3-tetrafluoropropene (HFO-1234ze). Drug Chem. Toxicol. 36, 170–180 (2013). https://doi.org/10.3109/01480545.2012.661738

    Article  Google Scholar 

  12. H. Groult, F.R. Leroux, A. Tressaud, Modern Synthesis Processes and Reactivity of Fluorinated Compounds: Progress in Fluorine Science (Elsevier, London, 2017)

    Google Scholar 

  13. W. Mao, Y. Bai, Z. Jia, Z. Yang, Z. Hao, J. Lu, Highly efficient gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene over mesoporous nano-aluminum fluoride prepared from a polyol mediated sol-gel process. Appl. Catal. A Gen. 564, 147–156 (2018). https://doi.org/10.1016/j.apcata.2018.07.028

    Article  Google Scholar 

  14. T. Katsuyuki, Measurements of vapor pressure and saturated liquid density for HFO-1234ze(E) and HFO-1234ze(Z). J. Chem. Eng. Data. 61, 1645–1648 (2016). https://doi.org/10.1021/acs.jced.5b01039

    Article  Google Scholar 

  15. Y. Higashi, K. Tanaka, T. Ichikawa, Critical parameters and saturated densities in the critical region for trans -1,3,3,3-Tetrafluoropropene (HFO-1234ze(E)). J. Chem. Eng. Data. 55, 1594–1597 (2010). https://doi.org/10.1021/je900696z

    Article  Google Scholar 

  16. K. Tanaka, G. Takahashi, Y. Higashi, Measurements of the isobaric specific heat capacities for trans -1,3,3,3-tetrafluoropropene (HFO-1234ze(E)) in the liquid phase. J. Chem. Eng. Data. 55, 2267–2270 (2010). https://doi.org/10.1021/je900799e

    Article  Google Scholar 

  17. K. Zhang, H. Chen, Z. Yang, Y. Duan, Experimental pvT property for the liquid HFO1234ze(E) using the isochoric method. J. Chem. Thermodyn. 149, 106160 (2020). https://doi.org/10.1016/j.jct.2020.106160

    Article  Google Scholar 

  18. T. Sotani, H. Kubota, S. Matsuo, Y. Tanaka, Vapor pressures and compressed liquid PVT properties of 1,1,1,3,3-pentafluoropropane(HFC-245fa). Rev. High Press. Sci. Technol. 7, 1195–1197 (1998). https://doi.org/10.4131/jshpreview.7.1195

    Article  Google Scholar 

  19. Y. Higashi, S. Hayasaka, C. Shirai, R. Akasaka, Measurements of PρT properties, vapor pressures, saturated densities, and critical parameters for R 1234ze(Z) and R 245fa. Int. J. Refrig. 52, 100–108 (2015). https://doi.org/10.1016/j.ijrefrig.2014.12.007

    Article  Google Scholar 

  20. X. Li, Q. Pang, J. Liu, Q. Ning, G. He, Isothermal vapour-liquid equilibrium data for environmentally friendly binary system {R1234ze(E) + R245fa}. J. Chem. Thermodyn. 175, 106894 (2022). https://doi.org/10.1016/j.jct.2022.106894

    Article  Google Scholar 

  21. P.M. Mathias, T.W. Copeman, Extension of the Peng-Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept. Fluid Phase Equilib. (1983). https://doi.org/10.1016/0378-3812(83)80084-3

    Article  Google Scholar 

  22. H. Orbey, S.I. Sandler, Modelling Vapor-Liquid Equilibria. Cubic Equation of State and Their Mixing Rules (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  23. J.M. Smith, H.C. Van Ness, M.M. Abbot, M.T. Swihart, Introduction to Chemical Engineering Thermodynamics, 8th edn. (McGraw Hill, New York, 2018)

    Google Scholar 

  24. X. Xu, S. Lasala, R. Privat, J.N. Jaubert, E-PPR78: a proper cubic EoS for modelling fluids involved in the design and operation of carbon dioxide capture and storage (CCS) processes. Int. J. Greenh. Gas Control. 56, 126–154 (2017). https://doi.org/10.1016/j.ijggc.2016.11.015

    Article  Google Scholar 

  25. Z. Yang, X. Tang, J. Wu, J. Lu, Experimental measurements of saturated vapor pressure and isothermal vapor-liquid equilibria for 1,1,1,2-Tetrafluoroethane (HFC-134a) + 3,3,3-trifluoropropene (HFO-1243zf) binary system. Fluid Phase Equilib. 498, 86–93 (2019). https://doi.org/10.1016/j.fluid.2019.06.020

    Article  Google Scholar 

  26. L. Kou, Z. Yang, X. Tang, W. Zhang, J. Lu, Experimental measurements and correlation of isothermal vapor-liquid equilibria for HFC-32 + HFO-1234ze (E) and HFC-134a + HFO-1234ze (E) binary systems. J. Chem. Thermodyn. 139, 105798 (2019). https://doi.org/10.1016/j.jct.2019.04.020

    Article  Google Scholar 

  27. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Stand. Ref. Data Progr. Gaithersbu (2018). https://doi.org/10.18434/T4/1502528.

  28. S. Dahl, M.L. Michelsen, High-pressure vapor-liquid equilibrium with a UNIFAC-based equation of state. AIChE J. 36, 1829–1836 (1990). https://doi.org/10.1002/aic.690361207

    Article  Google Scholar 

  29. R. Privat, F. Mutelet, Predicting the phase equilibria of synthetic petroleum fluids with the PPR78 approach. Thermodynamics 56, 3225–3235 (2010). https://doi.org/10.1002/aic

    Article  Google Scholar 

  30. R. Privat, F. Mutelet, J.N. Jaubert, Addition of the hydrogen sulfide group to the PPR 78, Model (Predictive 1978, Peng-Robinson equation of state with temperature dependent kij-calculated through a group contribution method). Ind. Eng. Chem. Res. 47, 10041–10052 (2008). https://doi.org/10.1021/ie800799z

    Article  Google Scholar 

  31. X. Xu, R. Privat, P. Duchet-suchaux, F. Bran, Predicting binary-interaction parameters of cubic equations of state for petroleum fluids containing pseudo-components. Ind. Eng. Chem. Res. 54, 2816–2824 (2015). https://doi.org/10.1021/ie504920g

    Article  Google Scholar 

  32. J.W. Qian, R. Privat, J.N. Jaubert, C. Coquelet, D. Ramjugernath, Fluid-phase-equilibrium prediction of fluorocompound-containing binary systems with the predictive E-PPR78 model. Int. J. Refrig. 73, 65–90 (2017). https://doi.org/10.1016/j.ijrefrig.2016.09.013

    Article  Google Scholar 

  33. R. Akasaka, Y. Zhou, E.W. Lemmon, A fundamental equation of state for 1,1,1,3,3-pentafluoropropane (R-245fa). J. Phys. Chem. Ref. Data. 44, 013104 (2015). https://doi.org/10.1063/1.4913493

    Article  ADS  Google Scholar 

  34. W. Wagner, J. Ewers, W. Pentermann, New vapour-pressure measurements and a new rational vapour-pressure equation for oxygen. J. Chem. Thermodyn. 8, 1049–1060 (1976). https://doi.org/10.1016/0021-9614(76)90136-1

    Article  Google Scholar 

  35. M.O. McLinden, M. Thol, E.W. Lemmon, Thermodynamic properties of trans-1,3,3,3-tetrafluoropropene [R1234ze(E)]: measurements of density and vapor pressure and a comprehensive equation of state, in Proc. 13th Int. Refrig. Air Cond. Conf. Purdue (2010)

  36. K. Tanaka, G. Takahashi, Y. Higashi, Measurements of the vapor pressures and p ρ T properties for trans -1,3,3,3-tetrafluoropropene (HFO-1234ze(E)). J. Chem. Eng. Data. 55, 2169–2172 (2010). https://doi.org/10.1021/je900756g

    Article  Google Scholar 

  37. G. Di Nicola, J.S. Brown, L. Fedele, S. Bobbo, C. Zilio, Saturated pressure measurements of trans-1,3,3,3-tetrafluoroprop-1-ene (R1234ze(E)) for reduced temperatures ranging from 0.58 to 0.92. J. Chem. Eng. Data. 57, 2197–2202 (2012). https://doi.org/10.1021/je300240k

    Article  Google Scholar 

  38. M. Gong, H. Zhang, H. Li, Q. Zhong, X. Dong, J. Shen, J. Wu, Vapor pressures and saturated liquid densities of HFO1234ze(E) at temperatures from 253.343 to 293.318 K. Int. J. Refrig. 64, 168–175 (2016). https://doi.org/10.1016/j.ijrefrig.2016.01.007

    Article  Google Scholar 

  39. M. Thol, E.W. Lemmon, Equation of state for the thermodynamic properties of trans-1,3,3,3-tetrafluoropropene [R-1234ze(E)]. Int. J. Thermophys. 37, 1–16 (2016). https://doi.org/10.1007/s10765-016-2040-6

    Article  Google Scholar 

  40. P.H. van Konynenburg, R.L. Scott, Critical lines and phase equilibria in binary van der Waals mixtures. Philos. Trans. R. Soc. London. Ser. A 298, 495–540 (1980). https://doi.org/10.1098/rsta.1980.0266

    Article  ADS  Google Scholar 

  41. R. Privat, J.N. Jaubert, Classification of global fluid-phase equilibrium behaviors in binary systems. Chem. Eng. Res. Des. 91, 1807–1839 (2013). https://doi.org/10.1016/j.cherd.2013.06.026

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the open fund from the Key Laboratory of Sulfur Hexafluoride of China Southern Power Grid Co., Ltd. (No. GDDKY2021KF04) and the National Science Foundation of China (No.51976164)

Author information

Authors and Affiliations

Authors

Contributions

NT and ZY wrote the main manuscript text; XT and DS performed the measurement. ZY modeled the results and WG prepared the Tables and Figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhiqiang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, N., Gu, W., Sun, D. et al. Isothermal Vapor–Liquid Equilibrium for the Binary System of Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-Pentafluoropropane. Int J Thermophys 44, 117 (2023). https://doi.org/10.1007/s10765-023-03219-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03219-w

Keywords

Navigation