Skip to main content

Advertisement

Log in

Measurement and Modeling of Speed of Sound in Binary Mixtures of Methyl Oleate with n-Hexane or n-Decane Under Pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, the speeds of sound were measured in binary liquid mixtures of methyl oleate and either n-hexane or n-decane at temperature T = 303.15 K and pressures ranging from 0.1 MPa to 70 MPa. The data obtained from these measurements were used to calculate the excess speed of sound for these mixtures. The speed of sound molecular weight product, raised to a constant power \(\gamma\) was also calculated and represented as a function of molar percentage. This was done in order to determine a simple combining rule for representing the speed of sound of mixtures composed of n-alkanes and fatty acid alkyl esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.E. Tat, J.H. Van Gerpen, NREL/SR-510-31462. Golden, Colorado, USA: National Renewable Energy Laboratory (2003).

  2. A.L. Boehman, D. Morris, J. Szybist, Energy Fuels 18, 1877 (2004)

    Article  Google Scholar 

  3. J.L. Daridon, Ind. Eng. Chem. Res. 61, 15620 (2022)

    Article  Google Scholar 

  4. J.L. Daridon, Int. J. Thermophys. 43, 78 (2022)

    Article  ADS  Google Scholar 

  5. F.M.R. Mesquita, F.X. Feitosa, R.S. Santiago, H.B. Sant’Ana, J. Chem. Eng. Data 56, 153 (2011)

    Article  Google Scholar 

  6. F.M.R. Mesquita, F.X. Feitosa, R.S. Santiago-Aguiar, H.B. Sant’Ana, Braz. J. Chem. Eng. 31, 543 (2014)

    Article  Google Scholar 

  7. X. Wang, X. Wang, J. Chen, Fuel 166, 553 (2016)

    Article  Google Scholar 

  8. X. Wang, X. Wang, H. Lang, J. Chem. Thermodynamics 97, 127 (2016)

    Article  Google Scholar 

  9. C. Su, C. Zhu, T. Lai, T. Wang, X. Liu, M. He, Thermochim. Acta 670, 211 (2018)

    Article  Google Scholar 

  10. D. Li, M. Guo, X. Wang, S. Lin, W. Jia, G. Wang, J. Chem. Thermodynamics 137, 86 (2019)

    Article  Google Scholar 

  11. E. Alptekin, M. Canakci, Renew Energy 33, 2623 (2008)

    Article  Google Scholar 

  12. R.C. Parente, C.A. Nogueira, F.R. Carmo, L.P. Lima, F.A.N. Fernandes, R.S. Santiago-Aguiar, J. Chem. Eng. Data 56, 3061 (2011)

    Article  Google Scholar 

  13. S. Kumar, J.S. Yadav, V.K. Sharma, W. Lim, J.H. Cho, J. Kim, J. Chem. Eng. Data 56, 497 (2011)

    Article  Google Scholar 

  14. O.A. Aworanti, S.E. Agarry, A.O. Ajani, Adv. Chem. Eng. Sci. 2, 444 (2012)

    Article  Google Scholar 

  15. M. Gülüm, A. Bilgin, Fuel Proc. Technol. 134, 456 (2015)

    Article  Google Scholar 

  16. M. Gülüm, A. Bilgin, Fuel 199, 567 (2017)

    Article  Google Scholar 

  17. D.L. Prak, M. Hamilton, R. Banados, J. Cowart, Fuel 311, 122503 (2022)

    Article  Google Scholar 

  18. G.R. Ivaniš, I.R. Radovic, V.B. Veljkovic, M.L.J. Kijevcanin, Fuel 184, 277 (2016)

    Article  Google Scholar 

  19. T.X. NguyenThi, J.P. Bazile, D. Bessières, Energies 11, 1212 (2018)

    Article  Google Scholar 

  20. A.A.A. Alves, L.H.G. de Medeiros, F.X. Feitosa, H.B. de Sant’Ana, J. Chem. Eng. Data 67, 607 (2022)

    Article  Google Scholar 

  21. P.A.G. Albo, S. Lago, Fuel 115, 740 (2014)

    Article  Google Scholar 

  22. J.P. Bazile, D. Nasri, A.W.S. Hamani, G. Galliero, J.L. Daridon, J. Supercrit. Fluids 140, 218 (2018)

    Article  Google Scholar 

  23. J.P. Bazile, D. Nasri, J.L. Daridon, J. Chem. Eng. Data 62, 1708 (2017)

    Article  Google Scholar 

  24. W. Marczak, J. Acoust. Soc. Am. 102, 2776 (1997)

    Article  ADS  Google Scholar 

  25. W.D. Wilson, J. Acoust. Soc. Am. 31, 1067 (1959)

    Article  ADS  Google Scholar 

  26. K. Meier, S. Kabelac, J. Chem. Eng. Data 58, 1398 (2013)

    Article  Google Scholar 

  27. J.L. Daridon, J.P. Bazile, D. Nasri, Int. J. Thermophys. 43, 23 (2022)

    Article  ADS  Google Scholar 

  28. J.W.M. Boelhouwer, Physica 34, 484 (1967)

    Article  ADS  Google Scholar 

  29. J.L. Daridon, B. Lagourette, J.P.E. Grolier, Int. J. Thermophys. 19, 145 (1998)

    Article  Google Scholar 

  30. S.J. Ball, J.P.M. Trusler, Int. J. Thermophys. 22, 427 (2001)

    Article  Google Scholar 

  31. T.S. Khasanshin, A.P. Shchemelev, High Temp. 39, 60 (2001)

    Article  Google Scholar 

  32. T.S. Khasanshin, V.S. Samuilov, A.P. Shchemelev, J. Eng. Phys. Thermophys. 81, 185 (2008)

    Article  Google Scholar 

  33. F. Yebra, J. Troncoso, L. Romaní, J. Chem. Thermodynamics 104, 102 (2017)

    Article  Google Scholar 

  34. A.W.S. Hamani, J.P. Bazile, H. Hoang, H.T. Luc, J.L. Daridon, G. Galliero, J. Mol. Liq. 303, 112663 (2020)

    Article  Google Scholar 

  35. C.W. Scholz, M. Richter, Int. J. Thermophys. 42, 18 (2021)

    Article  ADS  Google Scholar 

  36. A.L. Badalyan, N.F. Otpushchennikov, U.S. Shoytov, Izv. Akad. Nauk SSSR Fiz. 5, 448 (1970)

    Google Scholar 

  37. S. Ye, J. Alliez, B. Lagourette, H. Saint-Guirons, J. Arman, P. Xans, Rev. Phys. Appl. 25, 555 (1990)

    Article  Google Scholar 

  38. J.L. Daridon, J.P. Bazile, J. Chem. Eng. Data 63, 2162 (2018)

    Article  Google Scholar 

  39. J.L. Daridon, J.P. Bazile, J. Chem. Eng. Data 66, 3961 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript

Corresponding author

Correspondence to Jean-Luc Daridon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daridon, JL., Bazile, JP. & Nasri, D. Measurement and Modeling of Speed of Sound in Binary Mixtures of Methyl Oleate with n-Hexane or n-Decane Under Pressure. Int J Thermophys 44, 99 (2023). https://doi.org/10.1007/s10765-023-03208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03208-z

Keywords

Navigation