Skip to main content
Log in

Performance and Mechanism Study on Functionalized Phosphonium-Based Deep Eutectic Solvents for CO2 Absorption

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, a series of functionalized phosphonium-based deep eutectic solvents (DESs) were prepared, and the solubility of CO2 in DESs was determined at temperatures from 303.15 K to 333.15 K and pressures from 200 to 2500 kPa. The experimental results show that the addition of carboxyl, hydroxyl, or amino functional groups to the alkyl chain of phosphonium-based ionic liquid (IL) can improve the solubility of CO2 in DESs. With the use of the nonrandom two-liquid (NRTL) model, the solubility data for the {CO2 + DESs} system were correlated, and the average relative deviation (ARD%) between the calculated and experimental values was less than 5%. The maximum absorption of CO2 was shown by 1-carboxyethyltributylphosphonium bromide–diethylene glycol ([P4,4,4,2COOH][Br]-DEG), whose mole fraction of CO2 was 0.5335 at 303.15 K and 2500 kPa. At the same time, [P4,4,4,2COOH][Br]-DEG can still maintain high-CO2 absorption performance after five cycles of absorption and desorption, indicating that the DES had good cycle stability. In addition, the interaction energy between CO2 and four DESs was determined by density functional theory (DFT), and the chemical bond and weak interaction were revealed by interaction region indicator (IRI), to clarify the absorption mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. S. Mukherjee, P. Kumar, A. Hosseini, A. Yang, P. Fennell, Energy Fuels 28(2), 1028 (2014)

    Article  Google Scholar 

  2. S. Bachu, Prog. Energy Combust. Sci. 34(2), 254 (2008)

    Article  Google Scholar 

  3. Z. Ziobrowski, R. Krupiczka, A. Rotkegel, Int. J. Greenhouse Gas Control 47, 8 (2016)

    Article  Google Scholar 

  4. R. Sen, A. Goeppert, S. Kar, G.K.S. Prakash, J. Am. Chem. Soc. 142(10), 4544 (2020)

    Article  Google Scholar 

  5. S. Li, X. Yuan, S. Deng, L. Zhao, K.B. Lee, Renew. Sustain. Energy Rev. 152, 111708 (2021)

    Article  Google Scholar 

  6. J. Li, L. Chen, Y. Ye, Z. Qi, J. Chem. Eng. Data 59(6), 1781 (2014)

    Article  Google Scholar 

  7. Y. Du, Y. Wang, G.T. Rochelle, Int. J. Greenhouse Gas Control 49, 239 (2016)

    Article  Google Scholar 

  8. A. Veawab, P. Tontiwachwuthikul, A. Chakma, Ind. Eng. Chem. Res. 38(10), 3917 (1999)

    Article  Google Scholar 

  9. M.B. Haider, D. Jha, B. Marriyappan Sivagnanam, R. Kumar, Journal of Chemical & Engineering Data 63 (8), 2671 (2018)

  10. D.V. Wagle, H. Zhao, C.A. Deakyne, G.A. Baker, ACS Sustain. Chem. Eng. 6(6), 7525 (2018)

    Article  Google Scholar 

  11. G.R.T. Jenkin, A.Z.M. Al-Bassam, R.C. Harris, A.P. Abbott, D.J. Smith, D.A. Holwell, R.J. Chapman, C.J. Stanley, Miner. Eng. 87, 18 (2016)

    Article  Google Scholar 

  12. T. Altamash, M.S. Nasser, Y. Elhamarnah, M. Magzoub, R. Ullah, H. Qiblawey, S. Aparicio, M. Atilhan, J. Mol. Liq. 256, 286 (2018)

    Article  Google Scholar 

  13. R.B. Leron, M.H. Li, Thermochim. Acta 551, 14 (2013)

    Article  ADS  Google Scholar 

  14. X. Li, M. Hou, B. Han, X. Wang, L. Zou, J. Chem. Eng. Data 53(2), 548 (2008)

    Article  Google Scholar 

  15. G. Li, D. Deng, Y. Chen, H. Shan, N. Ai, J. Chem. Thermodyn. 75, 58 (2014)

    Article  Google Scholar 

  16. M. Lu, G. Han, Y. Jiang, X. Zhang, D. Deng, N. Ai, J. Chem. Thermodyn. 88, 72 (2015)

    Article  Google Scholar 

  17. R. Ullah, M. Atilhan, B. Anaya, M. Khraisheh, G. García, A. ElKhattat, M. Tariq, S. Aparicio, Phys. Chem. Chem. Phys. 17(32), 20941 (2015)

    Article  Google Scholar 

  18. T. Altamash, M. Atilhan, A. Aliyan, R. Ullah, G. García, S. Aparicio, RSC Adv. 6(110), 109201 (2016)

    Article  ADS  Google Scholar 

  19. W. Cheng, Q. Su, J. Wang, J. Sun, F.T.T. Ng, Catalysts 3(4), 878 (2013)

    Article  Google Scholar 

  20. Y. Huang, G. Cui, H. Wang, Z. Li, J. Wang, J CO2 Util 28, 299 (2018)

    Article  Google Scholar 

  21. J. Ren, L. Zheng, Y. Wang, X. Zang, J. Wu, Y. Yue, X. Han, L. Wu, Colloids Surf., A 556, 239 (2018)

    Article  Google Scholar 

  22. Y.S. Sistla, A. Khanna, Chem. Eng. J. 273, 268 (2015)

    Article  Google Scholar 

  23. Z.L. Li, F.Y. Zhong, J.Y. Huang, H.L. Peng, K. Huang, J. Mol. Liq. 317, 113992 (2020)

    Article  Google Scholar 

  24. Z.L. Li, F.Y. Zhong, L.S. Zhou, Z.Q. Tian, K. Huang, Ind. Eng. Chem. Res. 59(5), 2060 (2020)

    Article  Google Scholar 

  25. J. Chu, Z. Zhang, L. Dong, S. Chen, K. Yin, T. Ying, X. Zhang, Q. Li, W. Cheng, Fluid Phase Equilib. 524, 112719 (2020)

    Article  Google Scholar 

  26. J.M. Smith, J. Chem. Educ. 27(10), 584 (1950)

    Article  Google Scholar 

  27. X. Gui, Z. Tang, W. Fei, J. Chem. Eng. Data 56(5), 2420 (2011)

    Article  Google Scholar 

  28. X. Gui, Z. Tang, W. Fei, J. Chem. Eng. Data 55(9), 3736 (2010)

    Article  Google Scholar 

  29. T. Jiao, H. Wang, F. Dai, C. Li, S. Zhang, Ind. Eng. Chem. Res. 55(32), 8848 (2016)

    Article  Google Scholar 

  30. Y. Gu, Y. Hou, S. Ren, Y. Sun, W. Wu, ACS Omega 5(12), 6809 (2020)

    Article  Google Scholar 

  31. P. Willems, K. Arnbjerg-Nielsen, J. Olsson, V.T.V. Nguyen, Atmos. Res. 103, 106 (2012)

    Article  Google Scholar 

  32. X. Zhang, J. Wang, Z. Song, T. Zhou, Ind. Eng. Chem. Res. 60(27), 9992 (2021)

    Article  Google Scholar 

  33. L. Tian, c. qinxue, ChemRxiv 1 (5): 231 (2021)

  34. S. Sarmad, Y. Xie, J.-P. Mikkola, X. Ji, New J. Chem. 41(1), 290 (2017)

    Article  Google Scholar 

  35. A.P. Abbott, R.C. Harris, K.S. Ryder, J. Phys. Chem. B 111(18), 4910 (2007)

    Article  Google Scholar 

  36. A.C. Galvão, A.Z. Francesconi, J. Chem. Thermodyn. 42(5), 684 (2010)

    Article  Google Scholar 

  37. H.B. Balaraman, V. Rangarajan, S.K. Rathnasamy, J CO2 Util 65, 102217 (2022)

    Article  Google Scholar 

  38. C. Wang, H. Luo, H. Li, X. Zhu, B. Yu, S. Dai, Chemistry 18(7), 2153 (2012)

    Article  Google Scholar 

  39. N. Ahmad, X. Lin, X. Wang, J. Xu, X. Xu, Fuel 293, 120466 (2021)

    Article  Google Scholar 

  40. Q. Yang, Z. Wang, Z. Bao, Z. Zhang, Y. Yang, Q. Ren, H. Xing, S. Dai, Chemsuschem 9(8), 806 (2016)

    Article  Google Scholar 

Download references

Funding

We sincerely acknowledge the National Natural Science Foundation of China (No. 22178356, No. 21890763 and No. 22008242), the Clean Combustion and Low-carbon Utilization of Coal, Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA29030202, the Key-Area Research and Development Program of Guangdong Province (No.2020B0101370002). Sincerely appreciate Prof. Suojiang Zhang (IPE, CAS) for his careful academic guidance and great support.

Author information

Authors and Affiliations

Authors

Contributions

YC: conceptualization, investigation, data curation, methodology, writing—original draft. XW: investigation, supervision, writing—review. XZ: methodology, software. SC: writing—review and editing. YL: writing—review and editing. JZ: writing—review and editing. LS: supervision, writing—review and editing. LD: validation, supervision, funding acquisition, writing—review and editing. XZ: funding acquisition.

Corresponding authors

Correspondence to Li Dong or Lei Shi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 764 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Wang, X., Zhang, X. et al. Performance and Mechanism Study on Functionalized Phosphonium-Based Deep Eutectic Solvents for CO2 Absorption. Int J Thermophys 44, 98 (2023). https://doi.org/10.1007/s10765-023-03207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03207-0

Keywords

Navigation