Skip to main content
Log in

Experimental Investigation on the Solubility of 3,3,3-Trifluoropropene in [hmim][TfO] and [omim][TfO] ILs from 303.15 K to 343.15 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The working pairs composed of hydrofluoroolefins (HFOs) and ionic liquids (ILs) have exhibited promising potential in the absorption refrigeration systems (ARS). In order to exploit the possibility of 3,3,3-trifluoropropene/ILs as the pairs used in the ARS, the experimental determination on the solubility of 3,3,3-trifluoropropene in 1-hexyl-3-methyl-imidazolium trifluoromethanesulfonate ([hmim][TfO]) and 1-octyl-3-methyl-imidazolium trifluoromethanesulfonate ([omim][TfO]) ILs was conducted. The present measurements were carried out based on the isochoric saturation method at the temperature range from 303.15 K to 343.15 K. The experimental solubility data were correlated through the non-random two-liquid (NRTL) model, universal quasi-chemical (UNIQUAC) model and Krichevsky-Kasarnovsky (K-K) model, respectively. In addition, the influence of the alkyl chain length for different ILs on the solubility of R1243zf and the dissolving capacities of different HFOs in [hmim][TfO] were compared. The Henry’s constants and mixing thermodynamic properties (enthalpy, entropy and Gibbs Energy) of R1243zf in [hmim][TfO] and [omim][TfO] were calculated and discussed. Furthermore, the coefficients of performance of different R1243zf/IL working pairs in single-effect ARS were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. G. Kaur, H. Kumar, M. Singla, J. Mol. Liq. 351, 118556 (2022)

    Article  Google Scholar 

  2. A. Berthod, M.J. Ruiz-Angel, S. Carda-Broch, J. Chromatogr. A 1559, 2–16 (2018)

    Article  Google Scholar 

  3. H. Olivier-Bourbigou, M. Magna, D. Morvan, Appl. Catal. A-Gen. 373, 1–56 (2010)

    Article  Google Scholar 

  4. D. Wei, A. Ivaska, Anal. Chim. Acta 607, 126–135 (2008)

    Article  Google Scholar 

  5. M. Khamooshi, K. Parham, U. Atikol, Adv. Mech. Eng. 5, 620592 (2013)

    Article  Google Scholar 

  6. Y.R. Sui, W. Wu, Energy 263, 125689 (2023)

    Article  Google Scholar 

  7. G. Takalkar, A.K. Sleiti, Front. Energy 16, 521–535 (2022)

    Article  Google Scholar 

  8. A. Mehari, Z.Y. Xu, R.Z. Wang, Energ. Convers Manage 206, 112482 (2020)

    Article  Google Scholar 

  9. X.Y. Liu, L.H. Bai, S.Q. Liu, M.G. He, J. Chem. Eng. Data 61, 3952–3957 (2016)

    Article  Google Scholar 

  10. Y. Zhang, J.J. Yin, X.P. Wang, J. Mol. Liq. 260, 203–208 (2018)

    Article  Google Scholar 

  11. S. Asensio-Delgado, F. Pardo, G. Zarca, A. Urtiaga, J. Chem. Eng. Data 65, 4242–4251 (2020)

    Article  Google Scholar 

  12. S. Asensio-Delgado, F. Pardo, G. Zarca, A. Urtiaga, Sep. Purif. Technol. 249, 117136 (2020)

    Article  Google Scholar 

  13. S. Asensio-Delgado, M. Viar, F. Pardo, G. Zarca, A. Urtiaga, Fluid Phase Equilib. 549, 113210 (2021)

    Article  Google Scholar 

  14. S. Asensio-Delgado, M. Viar, A.A.H. Padua, G. Zarca, A. Urtiaga, A.C.S. Sustain, Chem. Eng. 10, 15124–15134 (2022)

    Google Scholar 

  15. X.P. Wang, Y. Zhang, D.B. Wang, Y.J. Sun, J. Chem. Eng. Data 62, 1825–1831 (2017)

    Article  Google Scholar 

  16. Y.J. Sun, Y. Zhang, G.L. Di, X.P. Wang, J.M. Prausnitz, L.W. Jin, J. Chem. Eng. Data 63, 3053–3060 (2018)

    Article  Google Scholar 

  17. T. Jiang, X.Z. Meng, Y.J. Sun, L.J. Jin, Q.M. Wei, J. Wang, X.P. Wang, M.G. He, Int. J. Refrig. 131, 178–185 (2021)

    Article  Google Scholar 

  18. Y.J. Sun, Y. Zhang, X.P. Wang, J.M. Prausnitz, L.W. Jin, Fluid Phase Equilib. 450, 65–74 (2017)

    Article  Google Scholar 

  19. Y. Zhang, X.C. Jia, X.P. Wang, Int. J. Refrig. 117, 338–345 (2020)

    Article  Google Scholar 

  20. X.Y. Liu, P. Pan, S.G. Peng, M.G. He, Y.D. He, CIESC J. 68, 4486–4493 (2018)

    Google Scholar 

  21. M.G. He, P. Pan, F. Yang, T. Wang, X.Y. Liu, J. Chem. Eng. Data 63, 1780–1788 (2018)

    Article  Google Scholar 

  22. W. Wu, H. Zhang, T. You, X. Li, Ind. Eng. Chem. Res. 56, 9906–9916 (2017)

    Article  Google Scholar 

  23. Y.J. Sun, G.L. Di, J. Wang, X.P. Wang, W. Wu, Int. J. Refrig. 109, 25–36 (2020)

    Article  Google Scholar 

  24. J.M. Asensio-Delgado, S. Asensio-Delgado, G. Zarca, A. Urtiaga, Int. J. Refrig. 134, 232–241 (2022)

    Article  Google Scholar 

  25. X.Y. Liu, Z. Ye, L.H. Bai, M.G. He, Energ. Convers Manage 181, 319–330 (2019)

    Article  Google Scholar 

  26. N.C. Zhang, Y.D. Dai, Int. J. Thermophys. 42, 152 (2021)

    Article  ADS  Google Scholar 

  27. N.A. Lai, Appl. Therm. Eng. 70, 1–6 (2014)

    Article  ADS  Google Scholar 

  28. V. Nair, Int. J. Refrig. 122, 156–170 (2021)

    Article  Google Scholar 

  29. R. Ciconkov, Int. J. Refrig. 86, 441–448 (2018)

    Article  Google Scholar 

  30. X.C. Jia, W.B. Dou, X.P. Wang, J. Mol. Liq. 364, 120031 (2022)

    Article  Google Scholar 

  31. X.C. Jia, H. Wang, X.P. Wang, J. Chem. Thermodyn. 164, 106637 (2022)

    Article  Google Scholar 

  32. X.C. Jia, Y. Luo, X.P. Wang, J. Mol. Liq. 347, 118347 (2022)

    Article  Google Scholar 

  33. X.C. Jia, Y.T. Ma, X.P. Wang, J. Mol. Liq. 372, 121228 (2023)

    Article  Google Scholar 

  34. A.M. Sadanandhan, P.K. Khatri, S.L. Jain, J. Mol. Liq. 295, 111722 (2019)

    Article  Google Scholar 

  35. N.A. Noorhisham, D. Amri, A.H. Mohamed, N. Yahaya, N.M. Ahmad, S. Mohamad, S. Kamaruzaman, H. Osman, J. Mol. Liq. 326, 115340 (2021)

    Article  Google Scholar 

  36. J.E. Sosa, R.P.P.L. Ribeiro, P.J. Castro, J.P.B. Mota, J.M.M. Araujo, A.B. Pereiro, Ind. Eng. Chem. Res. 58, 20769–20778 (2019)

    Article  Google Scholar 

  37. M.L. Ferreira, N.S.M. Vieira, P.J.N. Castro, L.F. Vega, A.B. Pereiro, J.M.M. Araujo, J. Mol. Liq. 359, 119285 (2022)

    Article  Google Scholar 

  38. M.C. Bubalo, K. Radosevic, I.R. Redovnikovic, J. Halambek, V.G. Srcek, Ecotox. Environ. Safe. 99, 1–12 (2014)

    Article  Google Scholar 

  39. J. Flieger, M. Flieger, Int. J. Mol. Sci. 21, 6267 (2020)

    Article  Google Scholar 

  40. S. Gehrke, M. von Domaros, R. Clark, O. Holloczki, M. Brehm, T. Welton, A. Luzar, B. Kirchner, Faraday Discuss. 206, 219–245 (2018)

    Article  ADS  Google Scholar 

  41. A.B. Pereiro, J.M.M. Araujo, S. Martinho, F. Alves, S. Nunes, A. Matias, C.M.M. Duarte, L.P.N. Rebelo, I.M. Marrucho, A.C.S. Sustain, Chem. Eng. 1, 427–439 (2013)

    Google Scholar 

  42. B.L. Shi, J. Mol. Liq. 320, 114412 (2020)

    Article  Google Scholar 

  43. S. Stolte, S. Abdulkarim, J. Arning, A.K. Blomeyer-Nienstedt, U. Bottin-Weber, M. Matzke, J. Ranke, B. Jastorff, J. Thöming, Green Chem. 10, 214–224 (2008)

    Article  Google Scholar 

  44. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, 2019.

  45. H. Renon, J.M. Prausnitz, AIChE J. 14, 135–144 (1968)

    Article  Google Scholar 

  46. A. Kamgar, F. Esmaeilzadeh, J. Mol. Liq. 220, 631–634 (2016)

    Article  Google Scholar 

  47. I.R. Krichevsky, J.S. Kasarnovsky, J. Am. Chem. Soc. 57, 2168–2171 (1935)

    Article  Google Scholar 

  48. J.M. Smith, H.C.V. Ness, M.M. Abbott, Introduction to Chemical Engineering Thermodynamics, 6th edn. (McGraw-Hill, New York, 2002)

    Google Scholar 

  49. K. Dong, Q. Wang, X.M. Lu, Q. Zhou, S.J. Zhang, Struct. Bond. 151, 1–38 (2014)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFE0210200) and National Natural Science Foundation of China (No. 51936009).

Author information

Authors and Affiliations

Authors

Contributions

XJ contributed to measuring the solubilities, writing draft version. LM contributed to the correlation of the models and analysis. XW contributed to reviewing and editing the whole manuscript.

Corresponding author

Correspondence to Xiaopo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Ma, L. & Wang, X. Experimental Investigation on the Solubility of 3,3,3-Trifluoropropene in [hmim][TfO] and [omim][TfO] ILs from 303.15 K to 343.15 K. Int J Thermophys 44, 92 (2023). https://doi.org/10.1007/s10765-023-03200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03200-7

Keywords

Navigation