Skip to main content
Log in

Time-Domain Thermoreflectance Study of the Thermal Transport Properties of All-Solid-State Ionic Thermoelectric Material

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The emerging ionic thermoelectric (i-TE) materials are promising for waste heat recovery and temperature sensors due to their huge ionic Seebeck coefficients. However, rare work concentrates on studying the intrinsic thermal conductivity of i-TE materials and the interfacial thermal conductance with electrodes, which could significantly affect the performance of i-TE-based devices. In this work, the thermal transport properties of polymer-based i-TE films at various temperatures were investigated by the time-domain thermoreflectance method. Interestingly, the thermal conductivity of the polymer i-TE films was found to decrease with increasing temperature, showing a similar temperature-dependent trend with crystalline materials. Moreover, the interfacial thermal conductance between i-TE films and the metal electrode is ~ 50 MW·m−2·K−1, which is related to the rotation speed during the spin-coating process. The above finding is important to optimize the performance of the i-TE devices in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Renew. Sustain. Energy Rev. 57, 1568–1579 (2016)

    Article  Google Scholar 

  2. M. Bonetti, S. Nakamae, M. Roger, P. Guenoun, J. Chem. Phys. 134, 114513 (2011)

    Article  ADS  Google Scholar 

  3. S.L. Kim, H.T. Lin, C. Yu, Adv. Energy Mater. 6, 1600546 (2016)

    Article  Google Scholar 

  4. W. Liu, X. Qian, C.-G. Han, Q. Li, G. Chen, Appl. Phys. Lett. 118, 020501 (2021)

    Article  ADS  Google Scholar 

  5. C. Chi, M. An, X. Qi, Y. Li, R. Zhang, G. Liu, C. Lin, H. Huang, H. Dang, B. Demir, Y. Wang, W. Ma, B. Huang, X. Zhang, Nat. Commun. 13, 221 (2022)

    Article  ADS  Google Scholar 

  6. X. He, H. Cheng, S. Yue, J. Ouyang, J. Mater. Chem. A 8, 10813–10821 (2020)

    Article  Google Scholar 

  7. C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu, Z. Han, W. Zhang, W. Wang, S.-P. Feng, G. Chen, W. Liu, Science 368, 1091–1098 (2020)

    Article  ADS  Google Scholar 

  8. M. Duff, J. Towey, Analog Dial. 44, 1–6 (2010)

    Google Scholar 

  9. M.M. Waldrop, Nature 530, 144–148 (2016)

    Article  ADS  Google Scholar 

  10. Y. Lee, J. Kim, H. Joo, M.S. Raj, R. Ghaffari, D.-H. Kim, Adv. Mater. Technol. 2, 1700053 (2017)

    Article  Google Scholar 

  11. H. Wang, D. Zhao, Z.U. Khan, S. Puzinas, M.P. Jonsson, M. Berggren, X. Crispin, Adv. Electron. Mater. 3, 1700013 (2017)

    Article  Google Scholar 

  12. Z.A. Akbar, J.-W. Jeon, S.-Y. Jang, Energy Environ. Sci. 13, 2915–2923 (2020)

    Article  Google Scholar 

  13. S.-M. Lee, D.G. Cahill, J. Appl. Phys. 81, 2590–2595 (1997)

    Article  ADS  Google Scholar 

  14. Y.K. Koh, S.L. Singer, W. Kim, J.M.O. Zide, H. Lu, D.G. Cahill, A. Majumdar, A.C. Gossard, J. Appl. Phys. 105, 054303 (2009)

    Article  ADS  Google Scholar 

  15. T. Wu, H. Jin, S. Dong, W. Xuan, H. Xu, L. Lu, Z. Fang, S. Huang, X. Tao, L. Shi, S. Liu, J. Luo, Sensors 20, 1346 (2020)

    Article  ADS  Google Scholar 

  16. D. Zhao, A. Martinelli, A. Willfahrt, T. Fischer, D. Bernin, Z.U. Khan, M. Shahi, J. Brill, M.P. Jonsson, S. Fabiano, X. Crispin, Nat. Commun. 10, 1093 (2019)

    Article  ADS  Google Scholar 

  17. P. Singh, H. Borkar, B.P. Singh, V.N. Singh, A. Kumar, AIP Adv. 4, 087117 (2014)

    Article  ADS  Google Scholar 

  18. C.J.L. Constantino, A.E. Job, R.D. Simões, J.A. Giacometti, V. Zucolotto, O.N. Oliveira, G. Gozzi, D.L. Chinaglia, Appl. Spectrosc. 59, 275–279 (2005)

    Article  ADS  Google Scholar 

  19. L. Mathies, D. Diddens, D. Dong, D. Bedrov, H. Leipner, Solid State Ionics 357, 115497 (2020)

    Article  Google Scholar 

  20. V.P. Pavlović, D. Tošić, R. Dojčilović, D. Dudić, M.D. Dramićanin, M. Medić, M.M. McPherson, V.B. Pavlović, B. Vlahovic, V. Djoković, Polym. Test. 96, 107093 (2021)

    Article  Google Scholar 

  21. X. He, Y. Ni, Y. Hou, Y. Lu, S. Jin, H. Li, Z. Yan, K. Zhang, J. Chen, Angew. Chem. Int. Ed. 60, 22672–22677 (2021)

    Article  Google Scholar 

  22. A.M. Evans, A. Giri, V.K. Sangwan, S. Xun, M. Bartnof, C.G. Torres-Castanedo, H.B. Balch, M.S. Rahn, N.P. Bradshaw, E. Vitaku, D.W. Burke, H. Li, M.J. Bedzyk, F. Wang, J.-L. Brédas, J.A. Malen, A.J.H. McGaughey, M.C. Hersam, W.R. Dichtel, P.E. Hopkins, Nat. Mater. 20, 1142–1148 (2021)

    Article  ADS  Google Scholar 

  23. C.-K. Mai, J. Liu, C.M. Evans, R.A. Segalman, M.L. Chabinyc, D.G. Cahill, G.C. Bazan, Macromolecules 49, 4957–4963 (2016)

    Article  ADS  Google Scholar 

  24. W. Yu, X. Zhao, P. Jiang, C. Liu, R. Yang, Mater. Today Phys. 20, 100447 (2021)

    Article  Google Scholar 

  25. D.B. Hall, P. Underhill, J.M. Torkelson, Polym. Eng. Sci. 38, 2039–2045 (1998)

    Article  Google Scholar 

  26. H. Ning, X. Zhang, S. Wang, R. Yao, X. Liu, D. Hou, Q. Ye, J. Li, J. Huang, X. Cao, J. Peng, Superlattices Microstruct. 139, 106400 (2020)

    Article  Google Scholar 

  27. Y.P. Koh, S.L. Simon, J. Polym. Sci. B Polym. Phys. 46, 2741–2753 (2008)

    Article  ADS  Google Scholar 

  28. T. Ohara, Y. Matsumoto, H. Ohashi, Phys. Fluids A 1, 1949–1959 (1989)

    Article  ADS  Google Scholar 

  29. R. Malhotra, L.A. Woolf, J. Chem. Thermodyn. 23, 867–876 (1991)

    Article  Google Scholar 

  30. W.N. dos Santos, J.A. de Sousa, R. Gregorio, Polym. Test. 32, 987–994 (2013)

    Article  Google Scholar 

  31. A.F. Visentin, T. Dong, J. Poli, M.J. Panzer, J. Mater. Chem. A 2, 7723–7726 (2014)

    Article  Google Scholar 

  32. D. Brouillette, G. Perron, J.E. Desnoyers, J. Solut. Chem. 27, 151–182 (1998)

    Article  Google Scholar 

  33. P. Jiang, X. Qian, R. Yang, J. Appl. Phys. 124, 161103 (2018)

    Article  ADS  Google Scholar 

  34. D.G. Cahill, Rev. Sci. Instrum. 75, 5119–5122 (2004)

    Article  ADS  Google Scholar 

  35. J. Liu, X. Wang, D. Li, N.E. Coates, R.A. Segalman, D.G. Cahill, Macromolecules 48, 585–591 (2015)

    Article  ADS  Google Scholar 

  36. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Appl. Phys. Rev. 1, 011305 (2014)

    Article  ADS  Google Scholar 

  37. X. Zheng, X. Wang, T. Zhang, X. Zhang, H. Chen, Int. J. Heat Mass Transf. 168, 120823 (2021)

    Article  Google Scholar 

  38. W.M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2017)

    Google Scholar 

  39. Y.K. Koh, D.G. Cahill, Phys. Rev. B 76, 075207 (2007)

    Article  ADS  Google Scholar 

  40. Y. Wang, L. Xu, Z. Yang, H. Xie, P. Jiang, J. Dai, W. Luo, Y. Yao, E. Hitz, R. Yang, B. Yang, L. Hu, Nanoscale 10, 167–173 (2018)

    Article  Google Scholar 

  41. B.C. Gundrum, D.G. Cahill, R.S. Averback, Phys. Rev. B 72, 245426 (2005)

    Article  ADS  Google Scholar 

  42. J. Zhou, C. Shi, Z. Zhang, X. Fan, Z. Ling, J. Zhu, D. Tang, J. Therm. Sci. 31, 1008–1015 (2022)

    Article  ADS  Google Scholar 

  43. S.-M. Lee, D.G. Cahill, T.H. Allen, Phys. Rev. B 52, 253–257 (1995)

    Article  ADS  Google Scholar 

  44. J. Liu, B. Yoon, E. Kuhlmann, M. Tian, J. Zhu, S.M. George, Y.-C. Lee, R. Yang, Nano Lett. 13, 5594–5599 (2013)

    Article  ADS  Google Scholar 

  45. H. Zhang, H. Wei, H. Bao, J. Therm. Sci. 31, 1052–1060 (2022)

    Article  ADS  Google Scholar 

  46. B. Wang, X. Yin, D. Peng, Y. Zhang, W. Wu, X. Gu, B. Na, R. Lv, H. Liu, Composites B 191, 107978 (2020)

    Article  Google Scholar 

  47. M.S. Jayalakshmy, J. Philip, Sens. Actuator A-Phys. 206, 121–126 (2014)

    Article  Google Scholar 

  48. S.K. Karan, A.K. Das, R. Bera, S. Paria, A. Maitra, N.K. Shrivastava, B.B. Khatua, RSC Adv. 6, 37773–37783 (2013)

    Article  ADS  Google Scholar 

  49. X. Wang, V. Ho, R.A. Segalman, D.G. Cahill, Macromolecules 46, 4937–4943 (2013)

    Article  ADS  Google Scholar 

  50. A. Roy, T.L. Bougher, R. Geng, Y. Ke, J. Locklin, B.A. Cola, ACS Appl. Mater. Interfaces 8, 25578–25585 (2016)

    Article  Google Scholar 

  51. Z. Cheng, F. Mu, L. Yates, T. Suga, S. Graham, ACS Appl. Mater. Interfaces 12, 8376–8384 (2020)

    Article  Google Scholar 

  52. M.D. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill, P.V. Braun, Nat. Mater. 11, 502–506 (2012)

    Article  ADS  Google Scholar 

  53. F. Sun, T. Zhang, M.M. Jobbins, Z. Guo, X. Zhang, Z. Zheng, D. Tang, S. Ptasinska, T. Luo, Adv. Mater. 26, 6093–6099 (2014)

    Article  Google Scholar 

  54. V. Bellido-Gonzalez, N. Stefanopoulos, F. Deguilhen, Surf. Coat. Technol. 74, 884–889 (1995)

    Article  Google Scholar 

  55. K. Zheng, F. Sun, X. Tian, J. Zhu, Y. Ma, D. Tang, F. Wang, ACS Appl. Mater. Interfaces 7, 23644–23649 (2015)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52176078, 52106095), Tsinghua University Initiative Scientific Research Program, Tsinghua-Toyota Joint Research Fund and University Joint Innovation Fund of China Academy of Launch Vehicle Technology (No. 2022-29).

Author information

Authors and Affiliations

Authors

Contributions

YL and CC designed, performed the experiments, and analyzed the data. YZ characterized the samples by Raman spectroscopy. YD helped characterize the thermal properties of samples with TDTR. YL, CC and WM wrote and finalized the manuscript. WM and XZ supervised the project. All the authors contributed to the discussion and gave comments.

Corresponding author

Correspondence to Weigang Ma.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2448 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Chi, C., Zhang, Y. et al. Time-Domain Thermoreflectance Study of the Thermal Transport Properties of All-Solid-State Ionic Thermoelectric Material. Int J Thermophys 44, 88 (2023). https://doi.org/10.1007/s10765-023-03199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03199-x

Keywords

Navigation