Skip to main content
Log in

Analysis of the Non-Newtonian Behavior and Viscosity of GNSs-CuO/Liquid EG Hybrid Nanofluid: An Experimental and Feed-Forward ANN Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The knowledge of thermophysical properties of heat transfer systems such as their dynamic viscosity is of interest for their efficiency improvement and miniaturization. Hybrid nanofluids are obtained by the suspension of nanoparticles in base fluids. In this study, the effects of temperature (at four levels, from 5 °C to 65 °C) and mass percentage (from 0.005 % to 5 %) were investigated on the dynamic viscosity of two types of graphene nanosheets-copper oxide/ethylene glycol (GNSs-CuO/liquid EG) hybrid nanofluids, i.e., 25 %GNSs-75 %CuO/liquid EG and 75 %GNSs-25 %CuO/liquid EG hybrid nanofluids. Transmission electron microscopy (TEM) and Zeta Potential were analyzed to investigate the shape, size, and stability of the nanoparticles. Results showed the non-Newtonian behavior and very high stability of the studied GNSs-CuO/liquid EG hybrid nanofluids. This behavior was more remarkable at high temperatures, high mass concentrations, and low shear rates. In similar temperatures and mass fractions, GNSs resulted in a higher increase in viscosity and relative viscosity compared to CuO nanoparticles. Furthermore, a feed-forward artificial neural network (ANN), as a robust machine learning algorithm, was used to predict the dynamic viscosity of both studied hybrid nanofluids having their mass percentage, temperature, and shear stress as network inputs. The acceptable precision of the ANN model and its generalization were observed through the comparison of experimental and predicted data and the smoothness of the obtained model surfaces, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data and material will be available on reasonable request.

References

  1. R.J.M. Palma, A. Lakhtakia, SPIE (2010). https://doi.org/10.1117/3.853406

    Article  Google Scholar 

  2. M. Afrand, A. Karimipour, A.A. Nadooshan, M. Akbari, Physica E (2016). https://doi.org/10.1016/j.physe.2016.07.013

    Article  Google Scholar 

  3. O. Mahian, A. Kianifar, S.Z. Heris, D. Wen, A.Z. Sahin, S. Wongwises, Nano Energy (2017). https://doi.org/10.1016/j.nanoen.2017.04.025

    Article  Google Scholar 

  4. S.Z. Heris, M.B. Pour, O. Mahian, S. Wongwises, Int. J. Heat Mass Transf. (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.071

    Article  Google Scholar 

  5. O. Mahian, A. Kianifar, S.Z. Heris, S. Wongwises, Int. J. Heat Mass Transf. (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.009

    Article  Google Scholar 

  6. C. Sun, S. Taherifar, O. Malekahmadi, A. Karimipour, A. Karimipour, Q.V. Bach, Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-020-05151-9

    Article  Google Scholar 

  7. S. Zhang, L. Lu, T. Wen, C. Dong, Appl. Therm. Eng. 188, 116589 (2021)

    Article  Google Scholar 

  8. M. Huang, H. Borzoei, A. Abdollahi, Z. Li, A. Karimipour, Int. Commun. Heat Mass Transf. 122, 105141 (2021)

    Article  Google Scholar 

  9. B.A.F. Dehkordi, A. Abdollahi, ICHMT (2018). https://doi.org/10.1016/j.icheatmasstransfer.2018.08.001

    Article  Google Scholar 

  10. R. Chen, Z. Zhao, Z. Su, D. Huang, C. Tang, J. Mol. Liq. 375, 121326 (2023)

    Article  Google Scholar 

  11. A. Mnyusiwalla, A.S. Daar, P.A. Singer, Nanotechnology (2003). https://doi.org/10.1088/0957-4484/14/3/201

    Article  Google Scholar 

  12. S.M. Peyghambarzadeh, S.H. Hashemabadi, S.M. Hoseini, M.S. Jamnani, ICHMT (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001

    Article  Google Scholar 

  13. K.H. Almitani, N.H. Abu-Hamdeh, S. Etedali, A. Abdollahi, A.S. Goldanlou, A. Golmohammadzadeh, J. Mol. Liq. 327, 114883 (2021)

    Article  Google Scholar 

  14. S. Sen Gupta, V. Manoj Siva, S. Krishnan, T.S. Sreeprasad, P.K. Singh, T. Pradeep, S.K. Das, J. Appl. Phys. (2011). https://doi.org/10.1063/1.3650456

    Article  Google Scholar 

  15. W. Yu, H. Xie, D. Bao, Nanotechnology (2009). https://doi.org/10.1088/0957-4484/21/5/055705

    Article  Google Scholar 

  16. N. Sezer, M.A. Atieh, M. Koç, Powder Technol. (2019). https://doi.org/10.1016/j.powtec.2018.12.016

    Article  Google Scholar 

  17. M.A. Akhavan-Behabadi, F. Hekmatipour, S.M. Mirhabibi, B. Sajadi, Exp. Therm. Fluid Sci. (2015). https://doi.org/10.1016/j.expthermflusci.2015.07.008

    Article  Google Scholar 

  18. Y. Xu, Q. Nguyen, O. Malekahmadi, R. Hadi, Z. Jokar, A. Mardani, A. Karimipour, R. Ranjbarzadeh, Z. Li, Q.V. Bach, Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6381

    Article  Google Scholar 

  19. X. Li, Y. Chen, S. Mo, L. Jia, X. Shao, Thermochim. Acta (2014). https://doi.org/10.1016/j.tca.2014.09.006

    Article  Google Scholar 

  20. A. Arshad, M. Jabbal, Y. Yan, D. Reay, J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.01.153

    Article  Google Scholar 

  21. P.K. Sah, S.S. Kumar, S. Sreedeep, Int. J. Thermophys. (2023). https://doi.org/10.1007/s10765-023-03163-9

    Article  Google Scholar 

  22. D. Velliadou, K.A. Tasidou, K.D. Antoniadis, M.J. Assael, R.A. Perkins, M.L. Huber, Int. J. Thermophys. (2021). https://doi.org/10.1007/s10765-021-02818-9

    Article  Google Scholar 

  23. M. Sandhya, D. Ramasamy, K. Kadirgama, W.S.W. Harun, R. Saidur, Int. J. Thermophys. (2023). https://doi.org/10.1007/s10765-023-03162-w

    Article  Google Scholar 

  24. A. Cröll, M. Volz, V. Riabov, A. Ostrogorsky, Int. J. Thermophys. (2023). https://doi.org/10.1007/s10765-023-03161-x

    Article  Google Scholar 

  25. X. Liang, J. Yang, X. Meng, J. Wu, Int. J. Thermophys. (2023). https://doi.org/10.1007/s10765-022-03148-0

    Article  Google Scholar 

  26. T. Ishizaki, H. Nagano, S. Tanaka, N. Sakatani, T. Nakamura, T. Okada, R. Fujita, A. Alasli, T. Morita, M. Kikuiri, K. Amano, E. Kagawa, H. Yurimoto, T. Noguchi, R. Okazaki, H. Yabuta, H. Naraoka, K. Sakamoto, S. Tachibana, S. Watanabe, Y. Tsuda, Int. J. Thermophys. (2023). https://doi.org/10.1007/s10765-023-03158-6

    Article  Google Scholar 

  27. S. Sotiriadou, E. Ntonti, D. Velliadou, K.D. Antoniadis, M.J. Assael, M.L. Huber, Int. J. Thermophys. (2023). https://doi.org/10.1007/s10765-022-03149-z

    Article  Google Scholar 

  28. B.R. Joudeh, Int. J. Thermophys. (2023). https://doi.org/10.1007/s10765-023-03155-9

    Article  Google Scholar 

  29. A.K. Mishra, B.B. Lahiri, J. Philip, J. Mol. Liq. 269, 47–63 (2018)

    Article  Google Scholar 

  30. P. Singh, A.K. Ansu, R.K. Sharma, P. Kumari, A. Kumar, R. Kumar, Int. J. Thermophys. (2023). https://doi.org/10.1007/s10765-022-03146-2

    Article  Google Scholar 

  31. M.H. Fakhar, A. Fakhar, H. Tabatabaei, Int. J. Hydromechatron. (2021). https://doi.org/10.1504/IJHM.2021.116956

    Article  Google Scholar 

  32. B. Liu, W. Lu, Int. J. Hydromechatron. (2022). https://doi.org/10.1504/IJHM.2022.127037

    Article  Google Scholar 

  33. S. Wang, J. Zhang, JDMD (2022). https://doi.org/10.37965/jdmd.2022.67

    Article  Google Scholar 

  34. J. Tang, C. Wei, Q. Li, Y. Wang, X. Ding, W. Huang, JDMD (2022). https://doi.org/10.37965/jdmd.2022.30

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

JW: Formal analysis; Writing—review & editing; Methodology. AK: Formal analysis; Writing—review & editing; Methodology. SMS: Formal analysis; Writing—review & editing; Methodology. AD: Formal analysis; Writing—review & editing; Methodology. SAB: Formal analysis; Writing—review & editing; Methodology. AA: Formal analysis; Writing—review & editing; Methodology. MI: Formal analysis; Writing—review & editing; Methodology.

Corresponding authors

Correspondence to Jing Wang or Mustafa Inc.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Karimipour, A., Sajadi, S.M. et al. Analysis of the Non-Newtonian Behavior and Viscosity of GNSs-CuO/Liquid EG Hybrid Nanofluid: An Experimental and Feed-Forward ANN Study. Int J Thermophys 44, 103 (2023). https://doi.org/10.1007/s10765-023-03196-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03196-0

Keywords

Navigation