Skip to main content
Log in

Transient Hot Strip On-a-Chip

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

For the first time, the thermal conductivity of a drop of water has been accurately measured within some tens of milliseconds. The instrument was a small MEMS sensor prototype that originally was designed to determine the flow velocity of fluids. Though the sensor has a strip-shaped heater of just 2 mm in length, its output was evaluated based on an adjusted transient hot wire (THW) model. The above extraordinary test was carried out in addition to a series of standard runs of the sensor on various gases and liquids. The objective was to work out an experimental proof-of-concept of a transient hot strip (sensor) on-a-chip and to demonstrate in an exemplary way its practical potential. The adjustments and extensions to the basic THW model were determined by means of reciprocal parametric mapping, a new mathematical tool. Bringing together MEMS technology and the hot-wire mathematical model has created a small size sensor that impresses by its increased reliability and robustness as well as its low power consumption. The sensor is particularly suitable for in situ and field measurements, long term monitoring and quality control of working fluids as well as a low cost katharometer in gas chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. MEMS: micro-electromechanical system.

  2. Not to be confused with composite functions.

  3. This statement will be justified below.

References

  1. U. Hammerschmidt, C. Sosna, A. Benkert, A. Meier, F. Völklein, Sens. Actuators A 295, 23 (2019)

    Article  Google Scholar 

  2. U. Hammerschmidt, C. Sosna, A. Benkert, A. Meier, F. Völklein, Sens. Imaging 20, 41 (2019)

    Article  ADS  Google Scholar 

  3. U. Hammerschmidt, C. Sosna, A. Benkert, Int. J. Thermophys. 43, 56 (2022)

    Article  ADS  Google Scholar 

  4. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, Oxford, 1986)

    MATH  Google Scholar 

  5. U. Grigull, H. Sandner, Wärmeleitung (Springer, Berlin, 1979)

    Book  MATH  Google Scholar 

  6. H. Taux, Wärmeleitung und Temperaturausgleich (Verlag Chemie GmbH, Weinheim, 1971)

    Google Scholar 

  7. K.D. Maglic, A. Cezairlyan, V.E. Peletsky (eds.), Compendium of Thermophysical Property Measurement Methods: Survey of Measurement Techniques, vol. 1 (Plenum Press, New York, 1984)

    Google Scholar 

  8. J. Kestin, W.A. Wakeham, C.Y. Ho (eds.), CINDAS Data Series on Material Properties: Properties of Fluids, Thermal Conductivity, Viscosity, and Diffusion Coefficient, vol. I–1 (Hemisphere Publishing Corporation, New York, 1989)

    Google Scholar 

  9. B. Shpil’rain, A.S. Umanskii, Y.A. Gorshkov, HTHP 7, 361 (1975)

    Google Scholar 

  10. B. Stalhane, S. Pyk, Tekn. Tidskr. 61, 389 (1931)

    Google Scholar 

  11. J.J. Healy, J.J. de Groot, J. Kestin, Physica 82C, 392 (1976)

    Google Scholar 

  12. J.W. Haarman, Physica 52, 605 (1971)

    Article  ADS  Google Scholar 

  13. U. Hammerschmidt, W. Sabuga, Int. J. Thermophys. 21, 1255 (2000)

    Article  Google Scholar 

  14. R. Model, U. Hammerschmidt, High Temp. High Press. 34, 649 (2002)

    Article  Google Scholar 

  15. R. Model, Int. J. Thermophys. 26, 165 (2005)

    Article  ADS  Google Scholar 

  16. U. Hammerschmidt, V. Meier, Int. J. Thermophys. 27, 840 (2006)

    Article  ADS  Google Scholar 

  17. R. Model, R. Stosch, U. Hammerschmidt, Int. J. Thermophys. 28, 1447 (2007)

    Article  ADS  Google Scholar 

  18. C.A. Nieto de Castro, M.J. Lourenco, Energies 13, 99 (2020). https://doi.org/10.3390/en13010099

    Article  Google Scholar 

  19. C.A. Nieto de Castro, B. Taxis, H.M. Order, W.A. Wakeham, Int. J. Thermophys. 9, 293 (1988)

    Article  ADS  Google Scholar 

  20. R.A. Perkins, A. Laesecke, C.A. Nieto de Castro, Fluid Phase Equilib. 80, 275 (1992)

    Article  Google Scholar 

  21. J.H. Blackwell, Fluid Phase Equilib. 34, 412 (1956)

    Google Scholar 

  22. K.D. Antoniadis, Thesis, Aristotle University of Thessaloniki, Thessaloniki, 2011

  23. S.E. Gustafsson, E. Karawacki, M.N. Khan, J. Phys. D 12, 1411 (1979)

    Article  ADS  Google Scholar 

  24. W. Sabuga, U. Hammerschmidt, Int. J. Thermophys. 16, 557 (1995)

    Article  ADS  Google Scholar 

  25. U. Hammerschmidt, in Proceedings of the 24th International Thermal Conductivity Conference, Pittsburgh, 1997, ed. by P.S. Gaal (Technomic, Lancaster, 1999)

  26. U. Hammerschmidt, W. Sabuga, Int. J. Thermophys. 21, 217 (2000)

    Article  Google Scholar 

  27. R. Model, U. Hammerschmidt, in Advanced Computational Methods in Heat Transfer VI. ed. by B. Suden, C.A. Brebbia (WIT Press, Ashurst, 2000)

    Google Scholar 

  28. T. Log, M.M. Metallinou, Rev. Sci. Instrum. 63, 3966 (1992)

    Article  ADS  Google Scholar 

  29. M. Gustavsson, H. Wang, R.M. Trejo, E. Lara-Curzio, R.B. Dinwiddie, S.E. Gustafsson, Int. J. Thermophys. 27, 1816 (2006)

    Article  ADS  Google Scholar 

  30. ISO, ISO-GUM: Guide to the Expression of Uncertainty in Measurement (JCGM-100) (ISO, Geneva, 2008)

    Google Scholar 

  31. JCGM, JCGM GUM-6:2020: Guide to the Expression of Uncertainty in Measurement—Part 6: Developing and Using Measurement Models (JCGM, 2020)

  32. M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto, Int. J. Thermophys. 18, 327 (1997)

    Article  ADS  Google Scholar 

  33. H.Q. Xie, H. Gu, X. Zhang, M. Fujii, Meas. Sci. Technol. 17, 1 (2006)

    Article  Google Scholar 

  34. X. Zhang, M. Fujii, Int. J. Thermophys. 21, 71 (2000)

    Article  Google Scholar 

  35. X. Zhang, W. Hendro, M. Fujii, T. Tomimura, N. Imaishi, Int. J. Thermophys. 23, 1077 (2002)

    Article  Google Scholar 

  36. X. Zhang, H. Xie, M. Fujii, K. Takahashi, T. Ikuta, H. Ago, H. Abe, T. Shimizu, Int. J. Heat Mass Transf. 49, 3879 (2006)

    Article  Google Scholar 

  37. P.L. Woodfield, J. Fukai, M. Fujii, Y. Takata, K. Shinzato, Int. J. Thermophys. 29, 1299 (2008)

    Article  ADS  Google Scholar 

  38. P.L. Woodfield, S. Moroe, J. Fukai, M. Fujii, Y. Takata, K. Shinzato, M. Kohno, Int. J. Thermophys. 30, 1748 (2008)

    Article  ADS  Google Scholar 

  39. R. Rusconi, W.C. Williams, J. Buongiorno, R. Piazza, L.-W. Hu, Int. J. Thermophys. 28, 1131 (2007)

    Article  ADS  Google Scholar 

  40. J. Kuntner, F. Kohl, B. Jacoby, Sens. Actuators A 130, 62 (2006)

    Article  Google Scholar 

  41. H. Ernst, A. Jachimowicz, G. Urban, IEEE Sens. J. 4, 361 (2001)

    Article  ADS  Google Scholar 

  42. S. Udina, M. Carmona, G. Carles, J. Santander, L. Fonseca, S. Marco, Sens. Actuators B 134, 551 (2008)

    Article  Google Scholar 

  43. D. Cruz, J.P. Chang, S. Showalter, F. Gelbard, R.P. Marginell, M.G. Blain, Sens. Actuators B 121, 414 (2007)

    Article  Google Scholar 

  44. H. Takamatsu, K. Inada, S. Uchida, K. Takahashi, M. Fujii, Int. J. Thermophys. 31, 888 (2010)

    Article  ADS  Google Scholar 

  45. F. Völklein, Personal Communication (2015)

  46. Electronics Markets Materials Division, 3M® Novec®649, Engineered Fluid, Product Information (3M Electronics Markets Materials Division, St Paul, 2018)

  47. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 63, 2783 (2018)

    Article  Google Scholar 

  48. BASF, Ad Blue®, Technisches Merkblatt M 6221 d (BASF, April 2008)

  49. X. Zhang, P. Grigoropoulos, Rev. Sci. Instrum. 68, 1115 (1995)

    Article  ADS  Google Scholar 

  50. G. Langer, J. Hartmann, M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997)

    Article  ADS  Google Scholar 

  51. I. Hatta, Y. Sasuga, R. Kato, A. Maesono, Rev. Sci. Instrum. 56, 1643 (1985)

    Article  ADS  Google Scholar 

  52. U. Hammerschmidt, M. Abid, Int. J. Therm. Sci. 100, 20 (2016)

    Article  Google Scholar 

  53. S.E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991)

    Article  ADS  Google Scholar 

  54. L. Kubičár, V. Vretenár, V. Štofanik et al., Int. J. Thermophys. 31, 1904 (2010)

    Article  ADS  Google Scholar 

  55. L. Kubičár, V. Bohač, V. Vretanár, et al., Int. J. Thermophys. 26, 1949 (2005)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in preparing and reviewing this manuscript.

Corresponding author

Correspondence to U. Hammerschmidt.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammerschmidt, U., Sosna, C. & Benkert, A. Transient Hot Strip On-a-Chip. Int J Thermophys 44, 81 (2023). https://doi.org/10.1007/s10765-023-03194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03194-2

Keywords

Navigation