Skip to main content
Log in

Thermal Conductivity Calculation Model for Refrigerant Mixtures in the Vapor Phase

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal conductivity measurements of ten refrigerant mixtures (R-404A, R-406A, R-407C, R-409A, R-410A, R-415A, R-507A, R-227ea/R-134a 61.5/38.5, R-227ea/R-134a 88.8/11.2 and R-227ea/R-134a 45/55) in the gas phase are analyzed. The thermal conductivity was studied with the same experimental setup, which improved the reliability of the results, excluding thereby systematic errors caused by using different methods to measure thermal conductivity. The reported experimental data have 1.5 % to 2.5 % uncertainty at 0.95 confidence level with a coverage factor of k = 2. Equations for calculating thermal conductivity depending on temperature and pressure are given for each mixture. The equations for thermal conductivity on the dew line and in the ideal gas state are obtained. A model for predicting thermal conductivity on a wide range of state parameters is proposed based on obtained experimental data and the theory of thermodynamic similarity. A comparison of the experimental data with the calculation model gives the standard deviation at 0.4 % to 2.1 %, which does not exceed the measurement error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. O.I. Verba, V.A. Gruzdev, Thermophys. Aeromech. 9, 445 (2002)

    Google Scholar 

  2. O.I. Verba, E.P. Raschektaeva, S.V. Stankus, High Temp. 50, 200 (2012). https://doi.org/10.1134/S0018151X1201018X

    Article  Google Scholar 

  3. O.I. Verba, Thermophys. Aeromech. 14, 165 (2007). https://doi.org/10.1134/S0869864307020023

    Article  ADS  Google Scholar 

  4. O.I. Verba, E.P. Raschektaeva, S.V. Stankus, High Temp. 52, 135 (2014). https://doi.org/10.1134/S0018151X14010222

    Article  Google Scholar 

  5. O.I. Verba, E.P. Raschektaeva, S.V. Stankus, Thermophys. Aeromech. 18, 661 (2011). https://doi.org/10.1134/S0869864311040135

    Article  ADS  Google Scholar 

  6. O.I. Verba, E.P. Raschektaeva, S.V. Stankus, Thermophys. Aeromech. 24, 135 (2017). https://doi.org/10.1134/S0869864317010140

    Article  ADS  Google Scholar 

  7. O.I. Verba, E.P. Raschektaeva, S.V. Stankus, Thermophys. Aeromech. 20, 477 (2013). https://doi.org/10.1134/S0869864313040100

    Article  ADS  Google Scholar 

  8. O.I. Verba, Thermophys. Aeromech. 18, 151 (2011). https://doi.org/10.1134/S0869864311010161

    Article  Google Scholar 

  9. O.I. Verba, E.P. Raschektaeva, S.V. Stankus, High Temp. 53, 158 (2015). https://doi.org/10.7868/S0040364414060192

    Article  Google Scholar 

  10. E.P. Raschektaeva, O.I. Verba, S.V. Stankus, in The Proceedings of the XIV Russian Conference on the Thermophysical Properties of Substances (RKTS-14), Kazan (2014), p. 345.

  11. E.P. Raschektaeva, S.V. Stankus, O.I. Verba, J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/1105/1/012158

    Article  Google Scholar 

  12. D. Velliadou, M.J. Assael, K.D. Antoniadis, M.L. Huber, Int. J. Thermophys. 42, 51 (2021). https://doi.org/10.1007/s10765-021-02803-2

    Article  ADS  Google Scholar 

  13. R.A. Perkins, M.L. Huber, M.J. Assael, Int. J. Thermophys. 43, 1 (2022). https://doi.org/10.1007/s10765-021-02941-7

    Article  Google Scholar 

  14. B.I. Lee, M.G. Kesler, AIChE J. 21, 510 (1975)

    Article  Google Scholar 

  15. E.W. Lemmon, M.O. McLinden, M.L. Huber, REFPROP—Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 8.0 (2002).

  16. M.G. He, Z.G. Liu, J.M. Yin, Int. J. Thermophys. 23, 1599 (2002). https://doi.org/10.1023/A:1020742018220

    Article  Google Scholar 

  17. S.G. Komarov, V.A. Gruzdev, Thermophys. Aeromech. 8, 435 (2001)

    Google Scholar 

  18. Y. Tanaka, S. Matsuo, S. Taya, Int. J. Thermophys. 17, 121 (1995)

    Article  ADS  Google Scholar 

  19. E.P. Raschektaeva, S.V. Stankus, J. Eng. Thermophys. 31, 563 (2022). https://doi.org/10.1134/S1810232822040026

    Article  Google Scholar 

Download references

Funding

This work was supported by the state contract with IT SB RAS (121031800219-2).

Author information

Authors and Affiliations

Authors

Contributions

E.P. Raschektaeva contributed to the experimental study, calculations and the main text of the article. S.V. Stankus participated in the generalization and analysis of the data and in the editing of the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elena Raschektaeva.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raschektaeva, E., Stankus, S. Thermal Conductivity Calculation Model for Refrigerant Mixtures in the Vapor Phase. Int J Thermophys 44, 65 (2023). https://doi.org/10.1007/s10765-023-03172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03172-8

Keywords

Navigation