Skip to main content
Log in

First-Principles Investigation on Phonon Mode Conversion of Thermal Transport in Silicene Under Tensile Strain

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Based on the first-principles calculations of the phonon Boltzmann transport equation (pBTE) under the framework of the three-phonon scattering theory, we characterized the temperature and size dependence of the lattice thermal conductivity of monolayer silicene under the tensile strain. Our research shows that the lattice thermal conductivity of silicene has obvious strain dependence, and demonstrates the great potential of thermal management by applying strain in silicene. The TA phonon mode contributes the most to the thermal conductivity of silicene, while the contribution of the ZA phonon is suppressed. With the increase in tensile strain, the contribution of LA mode phonons to the thermal conductivity increases rapidly, and eventually become the dominant phonon mode of the silicene lattice thermal conductivity. We suspect that this phenomenon is caused by the reduction of the warpage of the silicene and the restoration of the crystal symmetry due to the tensile strain. When the characteristic size is less than 10 nm, the lattice thermal conductivity of silicene is no longer sensitive to temperature, and with the increase in tensile strain, the effective phonon mean free path (MFP) of silicene also increases, and the size effect is more obvious. The characterization of the scattering channel reveals its significant influence on the characteristics of thermal transport capacity of different phonon modes. These findings deepen the understanding of the phonon dynamics of the monolayer silicene-like structure, and provide the reference and theoretical basis for the research on the heat management of the corresponding material combined with strain and size and the development of thermal management technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Novoselov, S. Morozov, T. Mohinddin, L. Ponomarenko, D. Elias, R. Yang, I. Barbolina, P. Blake, T. Booth, D. Jiang, Electronic properties of grapheme. Physica Status Solidi (b) 244, 4106–4111 (2007)

    Article  ADS  Google Scholar 

  2. F. Ning, D. Wang, Y.-X. Feng, L.-M. Tang, Y. Zhang, K.-Q. Chen, Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures. J. Mater. Chem. C 5, 9429–9438 (2017)

    Article  Google Scholar 

  3. C. Lee, X. Wei, J.W. Kysar, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  4. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  ADS  Google Scholar 

  5. C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, A. Geim, Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 4, 1889–1892 (2010)

    Article  Google Scholar 

  6. D.L. Nika, A.A. Balandin, Two-dimensional phonon transport in graphene. J. Phys. 24, 233203 (2012)

    Google Scholar 

  7. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010)

    Article  ADS  Google Scholar 

  8. C.J. Foss, Z. Aksamija, Quantifying thermal boundary conductance of 2D–3D interfaces. 2D Mater. 6, 025019 (2019)

    Article  Google Scholar 

  9. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)

    Article  Google Scholar 

  10. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  11. X. Gu, R. Yang, First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene. J. Appl. Phys. 117, 025102 (2015)

    Article  ADS  Google Scholar 

  12. C.-C. Liu, W. Feng, Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)

    Article  ADS  Google Scholar 

  13. C.-C. Liu, H. Jiang, Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011)

    Article  ADS  Google Scholar 

  14. N. Drummond, V. Zolyomi, V. Fal’Ko, Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012)

    Article  ADS  Google Scholar 

  15. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2012)

    Article  ADS  Google Scholar 

  16. T.P. Kaloni, Y. Cheng, U. Schwingenschlögl, Hole doped Dirac states in silicene by biaxial tensile strain. J. Appl. Phys. 113, 104305 (2013)

    Article  ADS  Google Scholar 

  17. M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012)

    Article  ADS  Google Scholar 

  18. W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, A. Bansil, Gated silicene as a tunable source of nearly 100 % spin-polarized electrons. Nat. Commun. 4, 1–6 (2013)

    Article  Google Scholar 

  19. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015)

    Article  ADS  Google Scholar 

  20. H. Xie, T. Ouyang, É. Germaneau, G. Qin, M. Hu, H. Bao, Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys. Rev. B 93, 075404 (2016)

    Article  ADS  Google Scholar 

  21. N.-T. Nguyen, Silicene transistors: silicon-based nanoelectronics from a single atom layer. Micro Nanosyst. 6, 205–206 (2014)

    Article  Google Scholar 

  22. C. Lian, J. Ni, The effects of thermal and electric fields on the electronic structures of silicene. Phys. Chem. Chem. Phys. 17, 13366–13373 (2015)

    Article  Google Scholar 

  23. F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015)

    Article  ADS  Google Scholar 

  24. L. Lindsay, D. Broido, T. Reinecke, Ab initio thermal transport in compound semiconductors. Phys. Rev. B 87, 165201 (2013)

    Article  ADS  Google Scholar 

  25. M. Kamatagi, N. Sankeshwar, Thermal conductivity of silicene–A molecular dynamics study, in: AIP Conference Proceedings, AIP Publishing LLC, 2015, pp. 110036.

  26. T.Y. Ng, J. Yeo, Z. Liu, Molecular dynamics simulation of the thermal conductivity of shorts strips of graphene and silicene: a comparative study. Int. J. Mech. Mater. Des. 9, 105–114 (2013)

    Article  Google Scholar 

  27. Q.-X. Pei, Y.-W. Zhang, Z.-D. Sha, V.B. Shenoy, Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: a molecular dynamics study. J. Appl. Phys. 114, 033526 (2013)

    Article  ADS  Google Scholar 

  28. X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, G. Su, Thermal conductivity of silicene calculated using an optimized Stillinger–Weber potential. Phys. Rev. B 89, 054310 (2014)

    Article  ADS  Google Scholar 

  29. Y. Kuang, L. Lindsay, S.-Q. Shi, G. Zheng, Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale 8, 3760–3767 (2016)

    Article  ADS  Google Scholar 

  30. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  31. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  33. K. Esfarjani, G. Chen, H.T. Stokes, Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011)

    Article  ADS  Google Scholar 

  34. H. Xie, M. Hu, H. Bao, Thermal conductivity of silicene from first-principles. Appl. Phys. Lett. 104, 131906 (2014)

    Article  ADS  Google Scholar 

  35. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  Google Scholar 

  36. K. Takeda, K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916 (1994)

    Article  ADS  Google Scholar 

  37. M. Hu, X. Zhang, D. Poulikakos, Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 87, 195417 (2013)

    Article  ADS  Google Scholar 

  38. W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014)

    Article  ADS  MATH  Google Scholar 

  39. A. Kundu, N. Mingo, D. Broido, D. Stewart, Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011)

    Article  ADS  Google Scholar 

  40. S.-I. Tamura, Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858 (1983)

    Article  ADS  Google Scholar 

  41. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scripta Mater. 108, 1–5 (2015)

    Article  ADS  Google Scholar 

  42. X. Li, K. Maute, M.L. Dunn, R. Yang, Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010)

    Article  ADS  Google Scholar 

  43. R. Picu, T. Borca-Tasciuc, M. Pavel, Strain and size effects on heat transport in nanostructures. J. Appl. Phys. 93, 3535–3539 (2003)

    Article  ADS  Google Scholar 

  44. K. Yuan, X. Zhang, L. Li, D. Tang, Effects of tensile strain and finite size on thermal conductivity in monolayer WSe2. Phys. Chem. Chem. Phys. 21, 468–477 (2019)

    Article  Google Scholar 

  45. L. Lindsay, D. Broido, N. Mingo, Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010)

    Article  ADS  Google Scholar 

  46. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, K. Banerjee, Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013)

    Article  ADS  Google Scholar 

  47. S. Larentis, B. Fallahazad, E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101, 223104 (2012)

    Article  ADS  Google Scholar 

  48. H. Shanks, P. Maycock, P. Sidles, G. Danielson, Thermal conductivity of silicon from 300 to 1400 K. Phys. Rev. 130, 1743 (1963)

    Article  ADS  Google Scholar 

  49. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973)

    Article  ADS  Google Scholar 

  50. B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, H. Zhu, Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity. RSC Adv. 6, 5767–5773 (2016)

    Article  ADS  Google Scholar 

  51. B. Peng, D. Zhang, H. Zhang, H. Shao, G. Ni, Y. Zhu, H. Zhu, The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials. Nanoscale 9, 7397–7407 (2017)

    Article  Google Scholar 

  52. N. Mounet, N. Marzari, First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005)

    Article  ADS  Google Scholar 

  53. B. Fultz, Vibrational thermodynamics of materials. Prog. Mater Sci. 55, 247–352 (2010)

    Article  Google Scholar 

  54. A. Ward, First principles theory of the lattice thermal conductivity of semiconductors, in, Boston College (2009).

Download references

Funding

We acknowledge funding supports from the National Natural Science Foundation of China (Grant Nos. U22A20210 and 52276089).

Author information

Authors and Affiliations

Authors

Contributions

GC completed the simulation, result collection and wrote the manuscript. BH conducted part of the simulation and the processing of the results, and corrected the manuscript. ZW and DT provided useful discussions and reviewed the manuscript.

Corresponding author

Correspondence to Zhaoliang Wang.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Hu, B., Wang, Z. et al. First-Principles Investigation on Phonon Mode Conversion of Thermal Transport in Silicene Under Tensile Strain. Int J Thermophys 44, 60 (2023). https://doi.org/10.1007/s10765-023-03170-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03170-w

Keywords

Navigation