Skip to main content
Log in

Thermophysical Properties of Indium(I) Iodide Crystals

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

InI single crystals are a promising room temperature detector material for X-rays and γ-rays. To improve crystal growth of the material by simulations, knowledge of thermophysical properties is essential, and since InI is orthorhombic, the anisotropy has to be taken into account. The temperature-dependent thermophysical properties have been measured for InI, including the anisotropic thermal expansion, specific heat, and the thermal diffusivity in the b direction. The anisotropic thermal expansion coefficients, determined by X-ray diffraction, were α11 = 1.03 × 10–5 K−1, α22 = 3.77 × 10–5 K−1, and α33 = 6.26 × 10–5 K−1. The specific heat, measured by DSC, was 0.226 J·g−1·K−1 at 335 K, with a temperature dependence of 9.582 × 10–5 J·g−1·K−2. In the course of the X-ray diffraction and DSC measurements, it could also be shown that supposed phase changes, reported in older literature, are actually not phase changes but oxidation effects. The thermal diffusivity in the b direction, measured by the Xenon Flash method, was 0.288 × 10–6 m2·s−1 at RT, decreasing to 0.253 × 10–6 m2·s−1 at 450 K. In addition, the volume increase upon melting and the thermal expansion of the melt have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The original measurements data are available upon request.

References

  1. A. Owens, Semiconductor Radiation Detectors (CRC Press, Boca Raton, 2019)

    Book  Google Scholar 

  2. Squillante, M.R., Zhou, C., Zhang, J., Moy, L.P.: InI nuclear radiation detectors. Proc. IEEE Conf. on Nuclear Science Symposium and Medical Imaging 1992, 138–140. https://doi.org/10.1109/NSSMIC.1992.301129

  3. K.S. Shah, P. Bennet, L.P. Moy, M.M. Misra, W.W. Moses, Characterization of indium iodide detectors for scintillation studies. Nucl. Instrum. Methods Phys. Res. A 380, 215–219 (1996). https://doi.org/10.1016/S0168-9002(96)00349-X

    Article  ADS  Google Scholar 

  4. T. Onodera, K. Hitomi, T. Shoji, Fabrication of indium iodide X- and gamma-ray detectors. IEEE Trans. Nucl. Sci. 53, 3055–3059 (2006). https://doi.org/10.1109/TNS.2006.882749

    Article  ADS  Google Scholar 

  5. P. Bhattacharya, M. Groza, Y. Cui, D. Caudel, T. Wrenn, A. Nwankwo, A. Burger, G. Slack, A.G. Ostrogorsky, Growth of InI single crystals for nuclear detection applications. J. Cryst. Growth 312, 1228–1232 (2010). https://doi.org/10.1016/j.jcrysgro.2009.12.021

    Article  ADS  Google Scholar 

  6. P.P. Fedorov, S.V. Kuznetsov, E.L. Chuvilina, A.A. Gasanov, V.G. Plotnichenko, P.A. Popov, A.V. Matovnikov, V.V. Osiko, Single crystalline InI—material for infrared optics. Dokl. Phys. 61, 261–265 (2016). https://doi.org/10.1134/S1028335816060069

    Article  ADS  Google Scholar 

  7. D.L. Porokhovnichenko, E.A. Dyakonov, S.V. Kuznetsov, V.V. Voronov, P.P. Fedorov, K.S. Zaramenskikh, A.A. Gasanov, L.V. Zhukova, A.S. Korsakov, D.D. Salimgareev, Indium iodide single crystal: breakthrough material for infrared acousto-optics. Opt. Lett. 45, 3435–3438 (2020). https://doi.org/10.1364/OL.393737

    Article  ADS  Google Scholar 

  8. M. Zhao, D. Zhang, S. Dong, A DFT study of NO2 and SO2 gas-sensing properties of InX (X = Cl, Br and I) monolayers. J. Mater. Sci. 56, 11828–11837 (2021). https://doi.org/10.1007/s10853-021-06047-1

    Article  ADS  Google Scholar 

  9. R.E. Brandt, V. Stefanović, D.S. Ginley, T. Buonassisi, Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015). https://doi.org/10.1557/mrc.2015.26

    Article  Google Scholar 

  10. R.E. Brandt, J.R. Poindexter, P. Gorai, R.C. Kurchin, R.L.Z. Hoye, L. Nienhaus, M.W.B. Wilson, J.A. Polizzotti, R. Sereika, R. Žaltauskas, L.C. Lee, J.L. MacManus-Driscoll, M. Bawendi, V. Stevanović, T. Buonassisi, Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 11, 4667–4674 (2017). https://doi.org/10.1021/acs.chemmater.6b05496

    Article  Google Scholar 

  11. M.I. Ustinova, S.D. Babenko, S.Y. Luchkin, F. Talalaev, D. Anokhin, S. Olthof, P. Troshin, Experimental evaluation of indium(I) iodide as lead-free perovskite-inspired material for photovoltaic applications. J. Mater. Chem. C 10, 3435–3439 (2022). https://doi.org/10.1039/D1TC05583F

    Article  Google Scholar 

  12. T.R. Brumleve, S.A. Mucklejohn, N.W. O’Brien, The preparation and vapour pressures of the indium(I) halides and the standard molar Gibbs free energy change for formation of InX from In(g) and X2(g), (X = Cl, Br, or I). J. Chem. Thermodyn. 21, 1193–1206 (1989). https://doi.org/10.1016/0021-9614(89)90106-7

    Article  Google Scholar 

  13. Fischer, S.C.: Korrosion von polykristallinem Aluminiumoxid (PCA) durch Metalljodidschmelzen sowie deren Benetzungseigenschaften. Ph.D. thesis, University of Aachen, Germany 2009, see: http://juser.fz-juelich.de/record/5438/files/Energie%26Umwelt_44.pdf.

  14. C.M. Ögün, W. Truong, C. Kaiser, R. Kling, W. Heering, Modelling of indium(I) iodide-argon low pressure plasma. J. Phys. D 47, 285202 (2014). https://doi.org/10.1088/0022-3727/47/28/285202

    Article  Google Scholar 

  15. P.P. Fedorov, A.I. Popov, R.L. Simoneaux, Indium iodides. Russ. Chem. Rev. 86, 1193–1206 (2017). https://doi.org/10.1070/RCR4609

    Article  Google Scholar 

  16. C. Peppe, Indium(I) compounds in organic synthesis. Curr. Org. Synth. 1, 227–231 (2004). https://doi.org/10.2174/1570179043366657

    Article  Google Scholar 

  17. I. Nicoara, D. Nicoara, C. Bertorello, G.A. Slack, A.G. Ostrogorsky, M. Groza, A. Burger, Czochralski growth of indium iodide and other wide bandgap semiconductor compounds. MRS Proc. (2011). https://doi.org/10.1557/opl.2011.1111

    Article  Google Scholar 

  18. Z.P. Xu, L. Zhang, Q. Wang, L.L. Ji, Y.K. Li, Horizontal zone refining of indium iodide (InI) polycrystal. J. Inorg. Mater. 30, 1063–1068 (2015). https://doi.org/10.15541/jim20150121

    Article  ADS  Google Scholar 

  19. A. Cröll, M. Volz, V. Riabov, A. Ostrogorsky: Vapor growth of indium monoiodide. 19th International Conference on Crystal Growth and Epitaxy, Keystone Colorado 2019. https://ntrs.nasa.gov/api/citations/20190030428/downloads/20190030428.pdf?attachment=true

  20. A. Cröll, J. Markert, M. Volz, A.G. Ostrogorsky, Wetting angles of monovalent indium iodide on different substrates. Cryst. Res. Technol. 52, 1600179 (2017). https://doi.org/10.1002/crat.201600179

    Article  Google Scholar 

  21. R.E. Jones, D.H. Templeton, The crystal structure of indium(I) iodide. Acta Cryst. 8, 847 (1955). https://doi.org/10.1107/S0365110X55002594

    Article  Google Scholar 

  22. G. Meyer, T. Staffel, Notiz zur Kenntnis der roten Monohalogenide des Indiums, InX (X = CI, Br, I). Z. Anorg. Allg. Chem. 574, 114–118 (1989). https://doi.org/10.1002/zaac.655740112

    Article  Google Scholar 

  23. A.A. Sidorov, E.A. Kulchenkov, P.A. Popov, K.N. Prostakova, P.P. Fedorov, S.V. Kuznetsov, E.L. Chuvilina, A.A. Gasanov, V.V. Osiko, Thermal expansion of InI crystal. Dokl. Phys. 61, 374–376 (2016). https://doi.org/10.1134/S1028335816080103

    Article  ADS  Google Scholar 

  24. A.A. Gasanov, E.A. Lobachev, S.V. Kuznetsov, P.P. Fedorov, Indium monoiodide: preparation and deep purification. Russ. J. Inorg. Chem. 60, 1333–1336 (2015). https://doi.org/10.1134/S0036023615110066

    Article  Google Scholar 

  25. J. Kaduk, H. Ganegoda, C. Bertorello, K. Morgon, G. Slack. Data set 00-063-0587 of ICDD PDF 4+ 2020 database, ICDD Grant-in-aid 2012.

  26. M. Zhang, H. Yan, G. Zhang, Q. Wie, H. Wang, Tetragonal high-pressure phase of InI predicted from first principles. Physica B 407, 398–402 (2012). https://doi.org/10.1016/j.physb.2011.11.005

    Article  ADS  Google Scholar 

  27. W. Klemm, F. Dierks, Beiträge zur Kenntnis der Verbindungen des Galliums und Indiums. IX. Die Dichten der festen Indiumhalogenide. Z. Anorg. Allg. Chem. 219, 42–44 (1934). https://doi.org/10.1002/zaac.19342190105

    Article  Google Scholar 

  28. V.A. Titov, T.P. Chusova, Yu.G. Stenin, On thermodynamic characteristics of In-I system compounds. Z. Anorg. Allg. Chem. 626, 1013–1018 (1999). https://doi.org/10.1002/(SICI)1521-3749(199906)625:6%3c1013::AID-ZAAC1013%3e3.0.CO;2-8

    Article  Google Scholar 

  29. E.A. Peretti, Thermal analysis of the Indium-iodine system. J. Am. Chem. Soc. 78, 5745–5746 (1956). https://doi.org/10.1021/ja01603a008

    Article  Google Scholar 

  30. A. Thiel, H. Koelsch, Studien über das Indium. Z. Anorg. Chem. 66, 288–321 (1910). https://doi.org/10.1002/zaac.19100660119

    Article  Google Scholar 

  31. A. Cröll, J. Tonn, E. Post, H. Böttner, A.N. Danilewsky, Anisotropic and temperature-dependent thermal conductivity of PbI2. J. Cryst. Growth 466, 16–21 (2017). https://doi.org/10.1016/j.jcrysgro.2017.03.006

    Article  ADS  Google Scholar 

  32. A. Burger, S.H. Morgan, D.O. Hernderson, E. Silberman, D. Nason, Thermal diffusivity of α-mercuric iodide. J. Appl. Phys. 69, 722–725 (1991). https://doi.org/10.1063/1.347356

    Article  ADS  Google Scholar 

  33. A. Burger, S.H. Morgan, E. Silberman, D. Nason, A.Y. Cheng, A review of recent measurements of optical and thermal properties of α-mercuric iodide. Nucl. Instrum. Methods Phys. Res. B 322, 427–431 (1992). https://doi.org/10.1016/0168-9002(92)91208-Q

    Article  Google Scholar 

  34. Y. Okada, Y. Tokumaru, Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J. Appl. Phys. 56, 314–320 (1984). https://doi.org/10.1063/1.333965

    Article  ADS  Google Scholar 

  35. G.A. Samara, L.C. Walters, D.A. Northrop, Polymorphism, compressibility and thermal expansion of thallous iodide. J. Phys. Chem. Solids 28, 1875–1883 (1967). https://doi.org/10.1016/0022-3697(67)90164-3

    Article  ADS  Google Scholar 

  36. G.J. Janz, R.P.T. Tomkins, C.B. Allen, J.R. Downey, S.K. Singer, Molten salts: volume 4, part 3, bromides and mixtures; iodides and mixtures—electrical conductance, density, viscosity, and surface tension data. J. Phys. Ref. Data 6, 409–596 (1977). https://doi.org/10.1063/1.555552

    Article  ADS  Google Scholar 

  37. G.J. Janz, Thermodynamic and transport properties for molten salts. Correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data. J. Phys. Ref. Data 17(Suppl. 2), 1–312 (1988)

    Google Scholar 

  38. Y. Hyanes, Density of molten elements and representative salts, in CRC Handbook of Chemistry and Physics, Internet Version. ed. by D.R. Lide (CRC Press, Boca Raton, 2005), pp.4–129

    Google Scholar 

  39. K. Ichikawa, K. Fukushi, Raman spectra of InI, InI2 and InI3 Correlation between structure and thermodynamic properties of fused InxI1–x mixtures. J. Chem. Soc. Faraday Trans. 176, 291–301 (1980). https://doi.org/10.1039/f19807600291

    Article  Google Scholar 

  40. Т.Н. Гулиев, Синтез и исследование иодидов индия. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. T. 34, 7–10 (1991)

    Google Scholar 

  41. S.C. Hansen, D. Kobertz, Solid-state transformations in metal iodides. Solid State Phenom. 38, 29–42 (2008). https://doi.org/10.4028/www.scientific.net/SSP.138.29

    Article  Google Scholar 

  42. B.A. Cмиpнoв, B.C. Дмитpиeв, A.H. Peдькин, Xимия oднoвaлeнтнoгo индия (Hayкa /Nauka, Moscow, 1986)

    Google Scholar 

  43. А.П. Кочеткова, В.Г. Тронев, О.Н. Гиляров, Комплексные соединения индия низшей валентности. Синтез и изучение свойств аммиакатов моногалогенидов индия. Dokl. Akad. Nauk SSSR 147, 1086–1089 (1962)

  44. T. Sato, Preparation and thermal decomposition of indium hydroxide. J. Therm. Anal. Calorim. 82, 775–782 (2005). https://doi.org/10.1007/s10973-005-0963-4

    Article  Google Scholar 

  45. J. Tonn, M. Matuchova, A.N. Danilewsky, A. Cröll, Removal of oxidic impurities for the growth of high purity lead iodide single crystals. J. Cryst. Growth 416, 82–89 (2015). https://doi.org/10.1016/j.jcrysgro.2015.01.024

    Article  ADS  Google Scholar 

  46. D.A. Ditmars, S. Ishihara, S.S. Chang, G. Bernstein, E.D. West, Enthalpy and Heat-capacity standard reference material: synthetic sapphire (α-Al203) from 10 to 2250 K. J. Res. Natl. Bur. Stand. 87, 159–163 (1982). https://doi.org/10.6028/jres.087.012

    Article  Google Scholar 

  47. G.A. Berezovskii, K.S. Sukhovei, T.P. Chusova, I.E. Paukov, Thermochemical properties of indium monoiodide at 7.15–343 K. Russ. J. Phys. Chem. 58, 1563–1564 (1984)

    Google Scholar 

  48. V.A. Titov, T.P. Chusova, Yu.G. Stenin, On thermodynamic characteristics of In-I system compounds. Z. Anorg. Allg. Chem. 625, 1013–1018 (1999). https://doi.org/10.1002/(SICI)1521-3749(199906)625:6%3c1013::AID-ZAAC1013%3e3.0.CO;2-8

    Article  Google Scholar 

  49. Т.П. Чусова, Ю.Г. Стенин, В.А. Титов, Г.А. Коковин, Т.Д. Карпова, Термодинамические cвойства моноиодида индия. Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim. Nauk 14, 62–67 (1983)

  50. S. Andre, A. DeGiovanni, A theoretical study of the transient coupled conduction and radiation heat transfer in glass: phonic diffusivity measurements by the flash technique. Int. J. Heat Mass Transfer 38, 3401–3412 (1995). https://doi.org/10.1016/0017-9310(95)00075-K

    Article  Google Scholar 

  51. A. Philipp, J.F. Eichinger, R.C. Aydin, A. Georgiadis, C.J. Cyron, M. Retsch, The accuracy of laser flash analysis explored by finite element method and numerical fitting. Heat Mass Transf. 56, 811–823 (2020). https://doi.org/10.1007/s00231-019-02742-7

    Article  ADS  Google Scholar 

  52. M. Li, M. Akoshima, Appropriate metallic coating for thermal diffusivity measurement of nonopaque materials with laser flash method and its effect. Int. J. Heat Mass Transf. 148, 119017 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.119017

    Article  Google Scholar 

  53. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961). https://doi.org/10.1063/1.1728417

    Article  ADS  Google Scholar 

  54. N.N. Sirota, P.A. Popov, I.A. Ivanov, The thermal conductivity of monocrystalline gallium garnets doped with rare-earth elements and chromium in the range 6–300 K. Cryst. Res. Technol. 27, 535–543 (1992). https://doi.org/10.1002/crat.2170270421

    Article  Google Scholar 

  55. W.M. Sears, J.A. Morrison, Low temperature thermal properties of PbI2. J. Phys. Chem. Solids 40, 503–508 (1979). https://doi.org/10.1016/0022-3697(79)90078-7

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support for this research by the ISS National Laboratory (formerly CASIS) under Grant No. 381672-CASIS GA-2015-207/NASA NNH11CD70A and by the U.S. National Aeronautics and Space Administration’s Division of Biological and Physical Sciences (BPS) under cooperative agreement NNM11AA01A is greatly appreciated. The authors would like to thank Dr. Ching-Hua Su for his assistance with the DSC and thermal diffusivity measurements, Dr. Gregory Jerman for his help with metal coating samples, and Jeff Quick for technical assistance.

Funding

Financial support for this research was given by the ISS National Laboratory (formerly CASIS) under Grant No. 381672-CASIS GA-2015-207/NASA NNH11CD70A and by the U.S. National Aeronautics and Space Administration’s Division of Biological and Physical Sciences (BPS) under cooperative agreement NNM11AA01A.

Author information

Authors and Affiliations

Authors

Contributions

AC wrote the manuscript, prepared material and did XRD, DSC and Xenon Flash measurements. MV secured funding and did XRD measurements. VR prepared material, grew single crystals and measured thermal expansion by the capillary method. AO secured funding, grew single crystals and measured thermal expansion by the capillary method. All authors reviewed the manuscript.

Corresponding author

Correspondence to Arne Cröll.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cröll, A., Volz, M., Riabov, V. et al. Thermophysical Properties of Indium(I) Iodide Crystals. Int J Thermophys 44, 53 (2023). https://doi.org/10.1007/s10765-023-03161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03161-x

Keywords

Navigation